
FlipSphere: A Software-based DRAM Error Detection and Correction Library for HPC

David Fiala and Frank Mueller
Dept. of Computer Science

North Carolina State University
Email: mueller@cs.ncsu.edu

Kurt B. Ferreira
Center for Computing Research
Sandia National Laboratories
Email: kbferre@sandia.gov

Abstract—Proposed exascale systems will present consider-
able challenges. In particular, DRAM soft-errors, or bit-flips,
are expected to greatly increase due to higher memory densities
and near-threshold voltages. To address this challenge, we
introduce FlipSphere, a tunable, transparent silent data cor-
ruption detection and correction library for HPC applications
that is first in its class to use hardware accelerators, such
as the Intel Xeon Phi MIC, to increase application resilience.
FlipSphere provides comprehensive silent data corruption pro-
tection for application memory by implementing on-demand
page integrity verification coupled with a software-based error
correcting code that allows for automatic error recovery. Using
this framework, we demonstrate the trade-offs of dedicating
hardware resources for resilience, showing up to 90% of
memory may be protected with a 40% slowdown.

I. INTRODUCTION

With the increased density and power concerns in modern
computing chips, components are shrinking, heat is increas-
ing, and hardware sensitivity to outside events is growing.
These variables, combined with the extreme number of
components expected to make their way into computing
centers as our computational demands expand, are posing
a significant challenge to the design and implementation
of future extreme-scale systems. Of particular interest are
soft errors in memory (spontaneous bit flips) that manifest
themselves as silent data corruption (SDC). SDC is of great
importance to the reliability of these systems due to its
ability to render results invalid in scientific applications
without detection of such corruption.

Silent data corruption can occur in many components
of a computer system including the processor, cache, and
memory due to radiation, faulty hardware, and/or lower
tolerances. While cosmic particles are one source of concern,
another growing issue resides within the circuits them-
selves, due to miniaturization of components. As compo-
nents shrink, heat becomes a design concern, which in turn
leads to lower voltages in order to sustain the growing chip
density. Lower component voltages result in a lower safety
threshold for the bits that they contain, which increases

This work was supported in part by a subcontract from Sandia National
Laboratories and NSF grants CNS-1058779, CNS-0958311. Sandia Na-
tional Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

the likelihood of an SDC occurring. Further, as densities
continue to grow, any event that upsets chips (i.e., radiation)
is more likely to flip bits.

Current systems use memory with hardware-based ECC
capable of correcting single bit errors and detecting double
bit errors [1] within a region of memory (typically a cache
line). Errors in current systems that result in three or more
bit flips may produce undefined results including an SDC,
which may produce invalid results without warning. While
the frequency of single and double bit errors is known (8% of
systems will incur correctable errors while 2%-4% will incur
uncorrectable errors [2]), the frequency of higher bit errors
is still an open research question, and GPUs are known to
be more prone to them [3].

While chipkill can detect and correct more errors than
ECC [4], it cannot do so for all memory errors and SDCs
outside DRAM may not be detected at all, and such SDCs
are routinely observed at scale [5]. The overall occurrence
of bit flips is expected to increase as chip densities increase
and feature sizes decrease. To address this SDC issue, this
work makes the following contributions:

• We introduce FlipSphere, transparent protection against
SDC requiring no application modification.

• To the best of our knowledge, this is the first work
to harnesses hardware accelerators such as Xeon Phis
to harden applications. Further, this work evaluates the
feasibility of full or shared co-execution for resilience on
accelerators.

• We introduce two levels of protection and analyze their
costs independently: Bit flip detection and bit flip detec-
tion plus automatic correction.

• FlipSphere provides a view into an application’s memory
access patterns as part of its functionality.

• Finally, FlipSphere is extensible, e.g., by custom hashing
algorithms or further strengthened ECC techniques.

II. DESIGN

This section introduces the design of FlipSphere, a trans-
parent, application-agnostic library that is capable of detect-
ing and optionally correcting silent data corruption (SDC)
in the memory of an executing process. While the design
is outlined here, a more detailed description can be found
elsewhere [6].



FlipSphere works alongside traditional hardware ECC as
an additional layer of defense against SDCs that exceed the
limits of hardware protection or it can independently provide
protection on systems that lack hardware ECC altogether.
Our SDC detection techniques are based on the ability to
verify the correctness of memory residing in RAM that
has not been accessed (relatively) recently. Specifically,
we are most interested in ensuring that memory has not
become perturbed by an SDC event before the application
is allowed to read a region of memory. When FlipSphere
guards memory accesses and verifies them before use, we
can ensure that a memory read has not been changed due to
any external events, such as memory corruption.1

Fault Model: We assume that SDCs occur as random
stochastic events uniformly distributed in DRAM due to ra-
diation from space and fabrication miniaturization resulting
in ever smaller differences between supply and threshold
voltages. ECC may detect and correct some of these faults
during memory scrubbing or when accessed, but not all
as related work shows [2], [3], [4], [7], i.e., our method
complements hardware scrubbing.

Error Model: FlipSphere currently protects an applica-
tion’s heap, BSS, and data sections but not that of the
operating system. Although the FlipSphere methodology
applies to all process sections, we protect neither the stack
nor code (instructions) in the implementation. Not all faults
result in errors, i.e., no error occurs when bit-flipped data
is never referenced. We focus on HPC applications that
commonly operate on large data referenced in its entirety.

A. Memory Access Tracking

The underlying tenet of FlipSphere is that an application’s
working-set of pages is considerably smaller than the en-
tire set of pages an application’s data resides in. Further,
FlipSphere assumes that SDC is likely to occur in memory
that has not been accessed recently. In addition, FlipSphere
is designed to protect memory in DRAM, as opposed to
processor faults.

We define two terms that relate to an application’s data
within FlipSphere: (1) locked memory, which has not been
accessed recently, resides in RAM, and must be verified
by FlipSphere before the application may read it, and
(2) unlocked memory, which has been recently accessed
and has undergone verification by FlipSphere to ensure its
integrity before being read/used by the application. While
the verification process will be explained later, the transition
between locked and unlocked must be considered first. Let
us assume that when an application is launched with 3 pages
of data, all pages of its memory start in a locked state. Let

1An external event is defined as any occurrence that involves direct mem-
ory modification without FlipSphere’s knowledge. For instance, FlipSphere
must be made aware of DMA transfers before/after they occur, as they may
bypass the CPU and thus FlipSphere.

Listing 1. ”bench” example code
int* mem = malloc(sizeof(int) * outerloopmax *

innerloopmax);
for(i=0..outerloopmax)
for(BusyWorkLoop=0..100)
for(j=0..innerloopmax)

mem[i][j] += 1; //touch memory

Listing 2. ”bench-rand” example code
int* mem = malloc(sizeof(int) * outerloopmax *

innerloopmax);
for(i=0..outerloopmax)
v = rand() % outerloopmax;
for(BusyWorkLoop=0..100)
for(j=0..innerloopmax)

mem[v][j] += 1; //touch memory

us also assume an access pattern of P1, P3, P3, P2. Upon
the first memory access to read memory in P1, FlipSphere
will interrupt execution to verify P1 since it is locked.
FlipSphere determines that P1 is free from SDC (correct)
via verification, marks it as unlocked, and returns control to
the application. Next, P3 is accessed by the application, but
since it is locked, the same aforementioned process occurs
for P3 before control is returned to the application. When
P3 is accessed a second time, no interruption occurs since
it has already been marked as unlocked to indicate it was
verified. Upon access of P2, the verification and transition to
unlocked occurs again. At this point, all memory is marked
as unlocked, and no further interruptions from FlipSphere
occur since all pages are in this state.

FlipSphere strives to both minimize and ensure that the
only pages allowed in an unlocked state are pages that have
been recently accessed. A simple way to conceptualize this
is to define a fixed-length least recently used (LRU) table of
pages. Whenever a page is accessed, it will be added to the
LRU table, and once the table is full, the oldest page entry in
the table would be evicted to make room for the most recent
page accessed. The eviction would require that FlipSphere
transition the evicted page from an unlocked to a locked
state, and simultaneously store some correctness metadata
on the page so that it may later verify the page when it is
accessed again in the future. As maintaining a LRU table
and performing high frequency evictions/lookups would be
prohibitively expensive in an HPC context, FlipSphere trades
off the accuracy of an LRU table for the performance of a
timer-based approach, wherein a relock interval is used to
periodically transition all unlocked pages into a locked state.
This approach allows for an unbounded number of pages to
be accessed between each relock interval before all become
relocked; however, in practice we tune the relock interval to
a value that correlates to a target percent of memory being
in the unlocked state. For example, in some applications, a
relock interval of 0.1 seconds may correlate to no more than
10% of memory being unlocked on average.

Listing 1 demonstrates a sample application, henceforth
“bench”, that allocates a large array of memory and then
proceeds to touch all memory in several iterations over



the i loop. Using bench with FlipSphere, we can visualize
the memory access patterns by utilizing FlipSphere’s page
access tracking functionality.

(a) f 10/83 (b) f 30/83 (c) f 50/83 (d) f 70/83
Figure 1. Memory access patterns of bench: relock interval 0.2 secs,
frames 10,30,50,70 out of 83, blue=pages accessed in each frame, lower
left corner=memory offset 0 with increasing addresses left to right and
bottom to top.

(a) f 12/93 (b) f 42/93
Figure 2. Memory access patterns of bench-rand: relock interval=0.2 sec.

In Fig. 1 we see four individual snapshots of the memory
access pattern of bench during execution. To generate these
graphs, we ran FlipSphere with bench while setting its
relock interval to 0.2 seconds. At each interval, FlipSphere
captured the status of every page’s status. For instance, from
Figures 1(a) to 1(b) we see that the blue unlocked pages
have moved from lower addresses to higher addresses. In the
example, an uninstrumented run of bench completed in 0.34
seconds, whereas the tracked execution in Fig. 1 was 100
times slower. Although the runtime overhead was severe, the
amount of memory in the unlocked state stayed on average at
approximately 0.1%. To counter the high overhead of page-
level tracking, we next introduce the optimization parameter
unlock ahead. unlock ahead specifies a number of additional
pages to unlock linearly ahead of the current page accessed.
E.g., if unlock ahead is 3 while P10 is accessed, then
pages P10, P11, P12, and P13 would be unlocked together.
This reduces the number of application interruptions during
execution, trading it off for a speculative memory access
pattern. Tuning unlock ahead depends on the application’s
characteristics. For bench, memory is scanned from low
to high addresses without many jumps, so higher unlock
ahead values will directly correlate to both an increase
in performance and in the number of pages unlocked on
average (see Fig. 3(a)). Listing 2/Fig. 2 show an application
that reads 512KB chunks at random memory locations.

Fig. 3(b) demonstrates optimal performance (in terms of
execution time) first at unlock ahead=128, since 128 * 4KB
(VM Page Size) = 512KB. We also see that increasing
the unlock ahead value beyond the working-set size of an
application will increase the amount of memory unlocked
without increasing performance. Specifically, we see that as
we move from an unlock ahead of 128 to 256, 512, or 1024
that the only notable difference is a significant increase in
the unlocked pages from 1% to 8% with no runtime effect.
This underscores the importance of proper tuning since we

 0

 5

 10

 15

 20

 25

 30

 35

Bas
el
in

e

UH=
0 

(0
.1

%
 u

nl
oc

ke
d)

UH=
2 

(0
.4

%
 u

nl
oc

ke
d)

UH=
4 

(0
.7

%
 u

nl
oc

ke
d)

UH=
8 

(1
.3

%
 u

nl
oc

ke
d)

UH=
16

 (2
.4

%
 u

nl
oc

ke
d)

UH=
32

 (4
.6

%
 u

nl
oc

ke
d)

UH=
64

 (8
.9

%
 u

nl
oc

ke
d)

UH=
12

8 
(1

7.
2%

 u
nl

oc
ke

d)

C
o
m

p
le

ti
o
n
 t

im
e
 i
n
 s

e
co

n
d
s

bench runtime

(a) bench: relock interval=0.2 secs

 0

 2

 4

 6

 8

 10

Bas
el
in

e

UH=
16

 (0
.1

%
 u

nl
oc

ke
d)

UH=
32

 (0
.3

%
 u

nl
oc

ke
d)

UH=
64

 (0
.5

%
 u

nl
oc

ke
d)

UH=
12

8 
(1

.0
%

 u
nl

oc
ke

d)

UH=
25

6 
(2

.0
%

 u
nl

oc
ke

d)

UH=
51

2 
(4

.0
%

 u
nl

oc
ke

d)

UH=
10

24
 (8

.0
%

 u
nl

oc
ke

d)

C
o
m

p
le

ti
o
n
 t

im
e
 i
n
 s

e
co

n
d
s

benchrand runtime

(b) benchrand: relock interval= 0.01 secs

Figure 3. Runtimes of benchmarks: UH=unlock ahead value, “% un-
locked”=avg. % pages unlocked between each relock interval.

do not want to speculatively unlock pages that will not be
used by an application in the relatively near future.

B. Error Detection (Memory Verification)

Utilizing the memory access tracking in the previous
section, we next move to a discussion on protecting memory
from silent data corruption. In network communications and
many file systems, cyclic redundancy check (CRC) codes
are used to guard against changes to raw data. CRC codes
are one-way hashes that are particularly well suited to detect
corruption of data as they are designed to be computationally
cheap. In FlipSphere we use the CRC32 hash, which requires
only 32bits of storage per hash generated.

We now detail FlipSphere’s page memory verification
which occurs during the transition between unlocked and
locked states. First, we assume that for every page we
store both the state (unlocked or locked) and the CRC.
This internal data is kept in a separate range of virtual
addresses distant from the application’s data. If a page is in
the locked state it is assumed to have the last computed CRC.
Furthermore, when a page is accessed at the transition from
locked to unlocked, we generate a new CRC32 of the page
being accessed while FlipSphere interrupts the execution
(see Listing 3 in [8]). The new CRC32 is compared against
the previously stored CRC32. If they match then FlipSphere



Table I
STORAGE OVERHEADS OF FLIPSPHERE ERROR DETECTION AND

CORRECTION CODES
Algorithm Overhead per Storage

4KB page Overhead %
CRC32 Hash 4 bytes 0.10%
72/64 ECC 512 bytes 12.5%
Total Cost 516 bytes 12.6%

marks the page as unlocked and returns control to the
application. If they do not match, a SDC error is assumed.
With CRC verification, FlipSphere may notify the user
and/or process, and optionally terminate it immediately as to
not perform further computations on invalid data. A rollback
to a previously known good checkpoint may be desired, if
checkpointing is available. However, we will later introduce
automatic error correction in Section II-C.

Recall that after a page transitions to an unlocked state,
there are no further interruptions from FlipSphere until it is
returned to the locked state during the next relock interval.
Since the CRC value stored by FlipSphere is immediately
outdated once a page has been written to, FlipSphere must
calculate and store a new CRC value every time the page
transitions back to a locked state (see Listing 3 in [8]). This
process occurs indefinitely throughout the execution of any
application protected by FlipSphere.

C. Error Correction

In this section we extend Flipsphere’s design to correct
possible bit flips. For example, the 72/64 hamming code
frequently used in hardware, may be employed inside of
FlipSphere to provide single error correction, double error
detection (SECDED) capabilities at the expense of the
additional storage required for the ECC codes. Combining
FlipSphere with hardware ECC can provide not only the
ability to detect triple bit errors or greater (dependent on the
capabilities of any particular ECC chip), but can also provide
correction capabilities as the software-layered protection in
FlipSphere may still retain viable error correcting codes once
hardware protection has been exceeded. FlipSphere extended
with hashing plus ECC codes combines the protection and
speed of hashing while limiting ECC code recalculation
during unlocking only to times when a page has become
corrupt during execution resulting in a mismatched hash.
The pseudo-code for error detection (CRC) and correction
(ECC) is given in Listing 4 of Fiala et al. [8].

D. Regions of Memory Protected

Internally, FlipSphere maintains its own alternative pro-
tected heap space for the application and interposes mem-
ory allocation functions, such as malloc, realloc, and
memalign. These interposed functions will allocate mem-
ory from FlipSphere’s protected heap and provide addresses
for the application. Later, these heap pages will always be
either locked or unlocked. Alternatively, for applications that
allocate most memory in a data or BSS section, FlipSphere

protects those sections of data as well. When an application
begins execution, all memory in FlipSphere’s protected
heap or data/BSS sections are locked by default. When an
application allocates memory (i.e., calls malloc), the pages
returned will become unlocked on future read/write memory
accesses until locked by the library later on. Memory outside
of the scope of FlipSphere’s protected memory will by
default not be protected or altered in any way.

E. Acceleration: Xeon Phi and SSE4.2

The heavy use of CRC hashing and software-based gen-
eration of ECC bits would normally prohibit the efficiency
of any software error detection and correction mechanism.
FlipSphere takes advantage of recent hardware developments
by performing CRC generation on the host CPU by utilizing
the new, performant CRC32 instruction[9] added in the
SSE4.2 instruction set. Furthermore, one of FlipSphere’s
significant contributions is the use of accelerators with an
asynchronous kernel written for the Intel Xeon Phi (In-
tel Many-Integrated Core) co-processors[10]. Each Phi co-
processor is an Intel chipset with approximately 60 cores
capable of over a teraflop of performance through a high
degree of parallelism. As each co-processor is a dedicated
PCI-x card, FlipSphere’s custom kernel is responsible for
data transfer of application memory via DMA between
the host memory and the Phi’s own on-board memory.
From there, FlipSphere is able to generate new ECC bits
(previously shown as a function in Listing 4 of Fiala et
al. [8] that are kept until the next relocking interval and the
process is repeated. We will explore both full and partial
Xeon Phi utilization for resilience such that a co-processor
may optionally be partially co-executing an application and
our resilience algorithm at the same time on a Phi.

F. Assumptions and Limitations

FlipSphere’s protection extends only to main memory
and is not designed to protect against faults that occur in
the CPU or other attached devices, including any attached
Xeon Phi co-processors. FlipSphere requires the capability
to detect memory accesses, this includes differing from read
and write operations as well as valid and invalid addresses.
This functionality is typically found in current memory
management units (MMU). FlipSphere also requires the
ability to install a signal handler that detects access vio-
lations. FlipSphere currently only protects memory that is
dynamically allocated using previously mentioned functions
such as malloc or static sections of data such as the BSS.
While the benchmarks evaluated under FlipSphere handle
BSS and malloc data, the approach generalizes and could
be extended to protect all data regions (including code and
initialized data).

Finally, as FlipSphere verifies page contents upon tran-
sitioning from the locked to the unlocked state, any SDCs



that affect unlocked memory during the window in which
they are not protected are vulnerable. For this reason it is
important that the relocking timer fires frequently enough
as to not needlessly leave more pages than necessary in an
unlocked state when they are not being utilized. Specifically,
it is desirable that the relock interval does not allow sub-
stantial amounts of memory to become unlocked when only
a smaller working set of pages is needed for execution.

III. IMPLEMENTATION

A. Memory Tracking Technique

To ensure protection of memory, FlipSphere has to receive
a notification when a page is accessed, which is implemented
via a mprotect system call to remove read and write
access of protected pages. Removing these permissions
ensures that a segmentation fault (SIGSEGV) violation is
raised when the page is accessed. The library installs a
signal handler for this SIGSEGV violation for notification.
Upon notification, FlipSphere uses an internal table to verify
that the addressed page is under its protection. Then, as
stated previously, verification is performed by comparing
hash values. After verification, the page’s read and write bits
are restored, again using the mprotect call, and control is
returned to the application.

B. Synchronized mprotect/TLB Flushing

FlipSphere tracks accesses to memory via MMU access
violations whenever pages in the locked state are read or
written. During the transition from locked to unlocked, which
occurs after FlipSphere verifies an accessed page’s hash,
the PROT_READ and PROT_WRITE page permissions are
added to the target page. In the x86 64 architecture, in which
we evaluated FlipSphere, the process of adding additional
access rights to a page does not involve flushing the TLB,
which makes the cost of transitioning from PROT_NONE to
read and write permissions relatively cheap. Unfortunately,
the reverse process in which we return all pages’ access
rights to PROT_NONE during a relocking cycle is much
more expensive and, in fact, causes a TLB flush for each
call to mprotect. To minimize TLB flushes, unlock and
relock of adjacent pages are aggregated to perform as few
mprotect calls as possible. Further, FlipSphere may syn-
chronize all protected processes on a node when the relock-
ing timer is triggered. Temporarily suspending all protected
processes while pages are re-locked as PROT_NONE by a
server process minimizes TLB flushes, ensures consistency,
and reduces system noise due to TLB misses.

C. Hashing and ECC Implementations

FlipSphere currently supports the CRC32 hashing algo-
rithm and the 72/64 hamming code (ECC) for both CPUs
and the Xeon Phi accelerator. Additional hashing and/or
ECC algorithms can be easily added to FlipSphere, e.g.,

utilizing external libraries such as libgcrypt or writing new
kernels for the Xeon Phi. Our own 72/64 hamming code
implementation is capable of single-error-correct-double-
error-detect on each group of 64 bits in protected memory.
Our kernel is capable of execution on either a host processor
with SSE4.2 (we rewrote our algorithm to use instructions
like the bit population counter in SSE4.2) or preferably
on a Xeon Phi by substituting the population count op-
code for a comparable one of the Phi’s ISA. We parallelize
both the host and Phi code using OpenMP, substitute the
normal parity computation with compact look-up tables,
generate pipelined code by removing instruction branching,
and finally unroll our computations to match the size of a
virtual page on the target host. Note that we also implement
verification/correction for the ECC codes to fix errors on-
demand when a hash mismatch occurs.

D. Optimization: Background Relocking

Recall that FlipSphere can synchronously trigger all pro-
tected processes to relock their unprotected pages all at
once to line up anticipated TLB flushes due to mprotect.
Unfortunately, this leaves applications with a brief win-
dow of time in which all progress is stopped, including
communication. This is FlipSphere’s primary source of
overhead to a protected application’s completion time. Mit-
igating this, to allow applications to make forward progress
in both computation and any outstanding communication,
FlipSphere provides an optimized version of its relocking
algorithm that operates in parallel to the application. By
temporarily serializing the process of mprotecting pages
and optionally DMA copying memory to an accelerator,
such as a Xeon Phi, FlipSphere can delegate the task of
generating ECC bits to run in parallel to the application as
soon the application’s memory is safely copied via DMA.
Since accelerators operate in the background, the application
continues with forward progress immediately.

E. Protected Memory: Heap and BSS

There are two potential types of memory that FlipSphere
protects: the heap or BSS. First, heap data that is dynami-
cally allocated via malloc, realloc, free, etc. is pro-
tected by interposing the standard memory allocation func-
tions. Internally, a separate heap is created by FlipSphere and
managed by the dlmalloc memory allocator to force the heap
into a specific (known) memory range. Returning addresses
that are within a predefined protected range of memory,
FlipSphere’s allocator effectively provides SDC protection
for dynamically allocated memory. Since many dynamically
linked libraries will make use of dynamic memory, our
interposed functions will perform a back trace using the
stack to identify if the caller should receive a pointer to the
regular application heap or FlipSphere’s protected heap. For
example, MPI implementations will commonly dynamically



allocate memory, but special care must be taken to never
return pointers to a protected heap address due to the poten-
tial for DMA accesses between the MPI implementations
and communication devices. Application/library malloc
calls will receive protected memory. Note that since MPI
calls and system calls always carry the potential to include
pointers to protected memory, FlipSphere monitors these
calls from both protected and unprotected libraries as well
as the application itself.

Alternatively, many applications opt to allocate large
arrays of memory in their BSS section. For these types of
applications, FlipSphere inspects the program during startup
(using LD_PRELOAD and the constructor attribute we
preempt even the main() function) and determines what
range of virtual memory is allocated for the BSS section in
order to directly apply page protection to this range.

F. Client/Server Model of FlipSphere

As a single server may host multiple protected processes
on it, FlipSphere has adopted a client/server model that
allows it to provide services such as notification relock
interval timers, multiplexing of Xeon Phi co-processors, and
simplified logic abstracted away from running in the same
address space as the protected application.

One of FlipSphere’s primary goals is to be application
agnostic. We accomplish this by bootstrapping the startup of
a process to be protected by utilizing Linux’s LD_PRELOAD
environment to attach a FlipSphere shared library to the
address space of a process during startup. This library
proceeds to immediately intercept execution as soon as the
process is created. A series of steps occur next:

• Config: Configuration data is read from environment
variables, including heap size, unlock ahead tuning, relock
interval value, and other tuning parameters (thread/core
counts, and whether to track memory, provide error de-
tection, and/or utilize the Phi for error correction codes).

• Memory: Shared memory is allocated for the protected
heap (if applicable) or the original BSS is unmapped from
the process’s virtual mappings and then reallocated as a
shared region. Shared memory is created for all internal
data, such as page state, CRC values, and ECC bits.

• Fork: The original process forks, sharing only data seg-
ments allocated in the previous step. If a forked server
already exists, the client instead attaches to the server, thus
connecting to all of the client’s shared memory segments.

• Server: The server tests communication with the client,
and optionally “warms up” the Xeon Phi by allocating
buffers which will later be filled with application memory
prior to using the ECC calculation kernel.

• Client: The client installs signal handlers for SIGSEGV
and a signal for relock interval timer events. Hooks are
installed in all Linux signal manipulation functions to
ensure the process cannot overwrite FlipSphere’s signal

handlers; instead, they may be installed as chains by
FlipSphere.

• Proceed: The application proceeds by calling main().

One point of interest is that between the client (applica-
tion) and server (FlipSphere), all virtual memory is shared
via Linux shared memory. This removes the need for any
redundancy in host memory or any memory copies, since
both processes have access to the same physical memory,
albeit in different virtual address spaces. By adopting this
model, the server initiates communication via triggers and
timers that are received as signals by the client. Utilizing
inter-process communication (IPC), the server is able to
control or multiplex the Xeon Phi for the client, which
provides the added benefit that a protected application may
still be able to offload computation on to a Phi if it desires
since the server is an entirely separate process.

G. Handling User Pointers with System Calls

The use of the SIGSEGV handler allows FlipSphere to
track an application’s memory accesses at the page level
during execution. Unfortunately, if an application or one of
its libraries makes a system call with a pointer to userspace
memory, the kernel will not invoke the userspace SIGSEGV
handler when it is unable to dereference a pointer. E.g., a
system call to read will directly place data into a userspace
process’s memory. Since the kernel is directly writing to a
pointer of a process, a SIGSEGV will not be generated if
the kernel is given a pointer to a region of memory that does
not have write permission. For this reason, we must wrap
relevant system calls and preemptively unlock any pointers
to protected userspace memory that the kernel receives as
parameters. To achieve this, FlipSphere includes hooks for
syscalls via a wrapper that unlocks all pointers passed to the
kernel prior to starting the actual system call’s logic.

Not all system calls are interposed, and many do not
even need to be since they lack userspace pointers. In
choosing which system calls to support initially, we profiled
many MPI applications and determined which system calls
were needed for our MPI library and for the applications
themselves to function as a proof-of-concept.

H. MPI Support and DMA

Any libraries (such as MPI) dependent DMA to transmit
data will operate outside the bounds of the MMU and thus
is undetected by FlipSphere. To ensure that any memory
undergoing DMA accesses will not be perceived as cor-
ruption, FlipSphere interposes all calls to MPI functions
using the MPI profiling layer. Any MPI function with a
pointer argument to memory that is read/written will be
treated as permanently unlocked before control is transferred
to MPI. Additionally, since non-blocking MPI sends and
receives may leave a region of memory volatile to change
for an indeterminate amount of time, FlipSphere tracks all



outstanding MPI Request objects to ensure that any pending
non-blocking MPI requests will be prevented from returning
to the locked state until the MPI Request is completed. This
includes asynchronous send/receive operations identified as
outstanding until a matching MPI_Test, MPI_Wait, or
related function is called for each request. Memory that may
be modified by MPI and DMA operations will always remain
in an unlocked state until the MPI operation that triggered
it is finished. FlipSphere has support for all common MPI
calls in C, C++, and Fortran.

IV. EXPERIMENTAL RESULTS

To gauge FlipSphere’s effectiveness, we performed ex-
periments to demonstrate both range of coverage in memory
and cost as application runtime overhead. These experiments
were carried out on compute nodes of the Stampede cluster
at TACC with each node consisting of 16 cores with Intel
Xeon E5 E5-2680 processors and 32GB memory. For our
experiments involving Xeon Phi co-processors, we ran Flip-
Sphere’s kernels on Xeon Phi SE10P (Knights Corner) co-
processors. Our results will cover performance metrics under
utilization of an entire co-processor for resilience as well as
partial resource sharing to allow co-execution of resilience
algorithms and computation on the same accelerator. As
one of the contributions of FlipSphere is ECC generation
in a Xeon Phi kernel, we first wrote our ECC algorithm on
an x86 64 host CPU and evaluated the engine to measure
the throughput of ECC generation. Next, we ported the
optimized version of our algorithm to the Xeon Phi and
evaluated it by varying the number of threads available.
Table II shows the performance of both the host CPU and
Phi. As our code is highly parallel, both configurations show
peak performance when the maximum number of hardware
threads is used. While raw throughput when all host CPUs
are used does outperform a Xeon Phi at full capacity, it
is critical to keep in mind that we may only dedicate a
subset of the available computation resources to resilience
while the majority of the resources will be for application
progress. In FlipSphere, ECC generation occurs in tandem
with regular computation, i.e., compute cores are used for
application forward progress while others may be reserved
and utilized for resilience. Crucially, if resources are not split
between computation and resilience, then applications would
be forced to wait for periodic resilience tasks to complete
when in fact the tasks may be safely and efficiently split.
Therefore, let us now look at the most important metric
of Table II by noting that when 25% of the host threads
are reserved for resilience, we achieve only 26% of the
potential ECC generation (resilience) throughput. But we
can nearly double the efficiency to 48% of optimal Phi
performance when only 25% of Phi cores are reserved for
resilience. The difference indicates that systems based on
Xeon Phi are better suited for software-based resilience than
traditional architectures. Although today’s Intel Xeon Phi

Knights Corner (KNC) co-processors are separate compute
units that communicate through the PCI-express and main-
tain their own DRAM (separate from the host’s DRAM),
the next generation Xeon Phi (Knights Landing — KNL)
will be available in two forms, as a co-processor and as
the next generation host CPU. For FlipSphere’s purposes,
this change provides a key variable in the way we evaluate
our performance. In KNC, which we evaluated FlipSphere
on, all memory must incur a DMA between the host CPU
and the co-processor via PCI-express. However, the next
generation KNL will not incur the performance penalty as
the host DRAM is directly attached to the Xeon Phi. While
Xeon Phi’s computational performance will likely improve
in each generation, from FlipSphere’s perspective we are
most concerned with the fact that DMA overhead is not
relevant and any clock speed performance gains or additional
threads will only increase performance.

Table II
ECC GENERATION PERFORMANCE

Number of Threads Throughput % optimum Throughput
1/16 CPU Thds. 1148 MB/s 7%
2/16 CPU Thds. 2161 MB/s 13%
4/16 CPU Thds. 4352 MB/s 26% (25% host thds. used)
8/16 CPU Thds. 8691 MB/s 51%

15/16 CPU Thds. 16016 MB/s 94%
16/16 CPU Thds. 17035 MB/s 100% (Host Optimum)
17/16 CPU Thds. 14800 MB/s 87%
61/244 Phi Thds. 4372 MB/s 48% (25% Phi thds. used)

122/244 Phi Thds. 7226 MB/s 76%
244/244 Phi Thds. 9560 MB/s 100% (Phi Optimum)
305/244 Phi Thds. 7754 MB/s 81%

FlipSphere’s Xeon Phi implementation of ECC generation
was profiled earlier as shown in Table II. Our first result to
report is an observed DMA transfer rate between the host
CPU and Xeon Phi (KNC) of 6271 MB/s, which is lower
than the kernel’s ECC generation throughput of 9690 MB/s.
Although the DMA transfer rate appears reasonable, we
notice that the serial portion of FlipSphere requires a DMA
copy from the application’s data to the Xeon Phi before
the application may resume progress. For instance, copying
512 MB of application data imposes a serial requirement
of at least 0.08 seconds at every relock interval. For an
application running for one hour with a relock interval of
0.1 seconds, we expect 72000 interrupts for DMA for a total
costed time of 48 minutes, which would be unreasonable.
As discussed, the DMA penalty will not apply to the KNL
generation of Xeon Phi. Thus we will report results for
KNC (DMA added), and KNL (no DMA, derived as an
interpolation from the former) in the results section, although
the pertinent result is the effectiveness of FlipSphere’s Xeon
Phi integration, not the cost of DMA, which will be phased
out from Xeon Phi. As FlipSphere protects applications from
silent data corruption by employing a generalized technique
of hashing pages to provide on-demand integrity verification,



we chose to evaluate our library on two different applications
from the NAS Parallel Benchmarks (NPB) suite. Our first ex-
periment is NPB’s FT (a discreet 3D fast Fourier Transform)
benchmark with a customized input size 75x75x75 to extend
execution across 10 iterations. The second experiment is
NPB’s CG (conjugate gradient solver) with a customized
problem size of 150,000 and 10 iterations. Each application
has different memory access patterns so that FlipSphere is
evaluated in both an environment where memory is touched
relatively infrequently per time unit (FT) and very frequently
(CG). For reference, to consider how much memory will
later be protected and transferred over DMA, CG processes
used 475MB of memory, and FT 640MB.

(a) Relock interval 0.025 sec

(b) Relock interval 0.05 sec

(c) Relock interval 0.10 sec
Figure 4. NAS FT CRC (Bit Flip Detection Only)

A. Error Detection (CRC) Only

We first analyze the performance of FlipSphere with error
detection (CRC) enabled on the NPB-FT benchmark as
shown in Fig. 4. In this particular experiment the host CPU
is used for CRC generation, and Phi co-processor is not
utilized. The three subfigures show multiple experiments
with different relock interval values. Fig. 4(a) shows the
results of varying the unlock ahead (UH) parameter while
keeping a constant relock interval of 0.025 seconds. We
observe a convex trend with a minimum runtime at UH=32
of 18 seconds (left y-axis) and approximately 5% memory
unlocked (right y-axis) on average, or, inversely said, up to
95% of memory is protected against silent data corruption at
this datapoint. This is a substantial degree of protection. For

(a) Strided (b) Linear

Figure 5. Two common, periodic memory access patterns of NPB-FT

Table III
NAS FT - CRC PLUS ECC - WITH DMA, 100% XEON THDS. (FULL
LOAD ON KNIGHTS CORNER) / WITHOUT DMA, 25% XEON THDS.

(APPROXIMATING LOAD SPLITTING)

Row Relock
Interval

Unlock
Ahead
Value

Normalized
Completion Time

100%/25% Xeon Threads

Percent Memory
Unlocked

100%/25% Xeon Threads
1 0.05s 16 1.62x / 1.56x 17.8% / 8.8%
2 0.05s 32 1.46x / 1.40x 20.6% / 10.8%
3 0.05s 64 1.44x / 1.58x 23.0% / 10.8%
4 0.05s 128 1.51x / 1.51x 24.5% / 15.4%
5 0.1s 16 1.59x / 1.47x 18.3% / 16.8%
6 0.1s 32 1.50x / 1.54x 20.5% / 16.8%
7 0.1s 64 1.44x / 1.43x 23.1% / 19.4%
8 0.1s 128 1.45x / 1.30x 25.2% / 23.3%
9 0.15s 16 1.59x / 1.54x 22.8% / 23.6%

10 0.15s 32 1.51x / 1.51x 24.2% / 24.6%
11 0.15s 64 1.44x / 1.37x 26.7% / 27.6%
12 0.15s 128 1.52x / 1.31x 27.6% / 29.5%

reference, the original benchmark completed in 10 seconds,
which indicates that with RL=0.025 seconds and UH=32
we observed a 70% runtime overhead, which is relatively
high albeit with a high degree of protection. As FlipSphere
is designed to be tuned to an application, it is important to
point out that the reported results show the affects of tuning.
By observing the effects of varied input parameters we see
that Fig. 4(c) shows no added runtime benefit (in terms of
time to completion) when UH is increased beyond 32. In
fact, as UH is increased, we only notice a steep decline in
the amount of memory protected. Figures 4(a) and 4(b) both
show sensitivity to unlock ahead and relock interval, which
demonstrates the potential ranges a user would explore to
find their desired trade-off of performance vs. resilience.
Generally, decreasing the relock interval increases the re-
silience of an application and its time to completion, while
the unlock ahead value is then subsequently used to further
tune the application (decrease overhead by improving time
to completion) to match both the working set size (per unit
relock interval) and amount of contiguous memory read in
stride per memory region/structure.

B. Error Detection and Correction

We now evaluate FlipSphere’s detection and correction
contributions in two configurations: (1) All Xeon Phi threads
are used for resilience while the protected application runs
on the host, which obligates DMA transfer between the
host and Xeon Phi, and (2) we approximate a Xeon Phi
running as the host processor (no DMA required) with 75%



Table IV
NAS CG - CRC PLUS ECC - WITH DMA, 100% XEON THDS. (FULL
LOAD ON KNIGHTS CORNER) / WITHOUT DMA, 25% XEON THDS.

(APPROXIMATING LOAD SPLITTING)

Row Relock
Interval

Unlock
Ahead
Value

Normalized
Completion Time

100%/25% Xeon Threads

Percent Memory
Unlocked

100%/25% Xeon Threads
1 0.05s 16 1.80x / 1.85x 22.2% / 21.9%
2 0.05s 32 1.55x / 1.52x 31.3% / 34.7%
3 0.05s 64 1.35x / 1.43x 43.6% / 42.1%
4 0.05s 128 1.40x / 1.21x 50.4% / 48.0%
5 0.1s 16 1.69x / 1.80x 39.3% / 41.8%
6 0.1s 32 1.46x / 1.43x 53.4% / 53.4%
7 0.1s 64 1.33x / 1.32x 62.0% / 62.7%
8 0.1s 128 1.30x / 1.38x 66.3% / 62.1%

Table V
NAS CG - CRC PLUS ECC - WITHOUT DMA, 25% XEON THDS.

(APPROXIMATING LOAD SPLITTING)

Row Relock
Interval

Unlock
Ahead
Value

Normalized
Completion

Time

Percent
Memory
Unlocked

1 0.05s 16 1.85x 21.9%
2 0.05s 32 1.52x 34.7%
3 0.05s 64 1.43x 42.1%
4 0.05s 128 1.21x 48%
5 0.1s 16 1.80x 41.8%
6 0.1s 32 1.43x 53.4%
7 0.1s 64 1.32x 62.7%
8 0.1s 128 1.38x 62.1%

of threads reserved for the application while 25% are ear-
marked for resilience. Today’s Knights Corner co-processors
are used in the former and are an accurate representation
of performance. An environment with a Knights Landing
host processor is approximated by reserving only 25% of
hardware threads for FlipSphere. The ratio of compute to
resilience threads is variable, but we have chosen 25%
from Table II. This configuration does not require DMA,
hence, performance is increased without the overhead of
DMA. At the same time, the resilience throughput is de-
creased. Depending on the access patterns of applications, in
some occasions the net difference results in no performance
change in terms of protection and overhead. For FT, Rows 2
of Table III show similar completion time, for instance, but
protection is halved in the latter. For CG, rows 1 and 2 of
Table IV show almost no difference in performance as the
effect of moving the overheads from DMA to computation
was balanced out.

For all results in Tables III and IV, we have highlighted
what we deem to be the best performing configurations.
Each row contains as tunable input parameters the unlock
ahead value and the relock interval resulting in a normalized
runtime (1.0x is an unmodified execution without resilience)
and the percent of memory unlocked, on average. To find
the degree of protection, we invert the percent of memory
unlocked, i.e., lower unlocked is better. Although not shown,
we have evaluated FlipSphere in many unreported configu-
rations (to conserve space), but have reported the best per-

forming values and their neighbors to provide perspective.
As shown in Fig. 5, FT predominantly experiences a

strided access memory pattern and periodic scanning pattern.
Compared to CG (which has rapid, linear scanning of all
its address space), FT’s performance with FlipSphere is
highly dependent on a tuned unlock ahead value. While
Table III is representative of performance with DMA, a
similar result also appears without DMA in the same table.
We can see that in each set of 4 rows we only vary the unlock
ahead value and always observe peak memory coverage
between values 16-32 for unlock ahead. This is indicative of
proper tuning to match the strides shown in Fig. 5. Beyond
that range, memory coverage rapidly decreases for values
such as 64-128. Although not shown, one can increase the
memory coverage by lowering the relock interval, but this
is prohibitively expensive as overheads quickly exceed 2-3x,
which would then begin to favor double modular redundancy
for bit flip detection alone (albeit without the corrective
capabilities FlipSphere provides). For FT, we conclude that
the highlighted row 2 is the best balanced configuration
when both the completion time and memory protection
are considered as it provides 90% memory coverage at a
40% overhead when Xeon Phi is the host CPU for both
computation and resilience. Alternatively, it provides 80%
coverage with a 46% overhead when traditional CPUs are
used on the host for computation.

CG’s performance is reported in Table IV. and V. While
the tables feature different resilience configurations, the
completion time and memory coverage is similar in CG’s
case since it is more memory bound than FT. While each
2nd result utilizes only 25% of the Phi’s hardware threads for
resilience, its loss of resilience throughput is balanced out
by a lack of DMA transfer overheads (Knights Landing).
In contrast to FT, the best reasonably achievable memory
coverage of 88% is possible at a runtime overhead of 85%
for both configurations of CG due to high frequency of
memory scanning. CG illustrates the impact of high speed
memory accesses on FlipSphere, still under protection at less
than 2x overheads. Notice that we support error correction
with overheads more performant than dual redundancy,
which only provides error detection.

V. RELATED WORK

FlipSphere is based on LIBSDC [11]. LIBSDC provides
software-based page-level protection using page locking,
tracing via API ptrace, and hashing. FlipSphere differs
from LIBSDC by providing a full software-based ECC
implementation via hardware accelerators, timer-based re-
locking instead of LRU, DMA interception, and kernel call
tracking thereby removing the dependence on ptrace.

GPUs have been previously used to generate and store
hash and ECC codes to ensure integrity in error-prone GPU
memory [12] and to determine modified data for checkpoint-



ing [13]. In contrast, we generate software erasure codes
for data that resides on the host CPU by using hardware
accelerators.

Previous work on silent data corruption has focused on
using algorithm-based fault tolerance to protect dense matrix
operations [14]. These methods are typically difficult to
extend for arbitrary data structures and algorithms [15].
Also, this method does not provide comprehensive coverage
to the entire application, leaving some data vulnerable to
SDCs.

Similar to FlipSphere, background scrubbing with ECC
codes can periodically validate memory and correct pos-
sible errors [16]. In contrast to this scrubbing approach,
FlipSphere provides on-demand page-level checking based
on the application’s data access patterns. In an HPC en-
vironment, scrubbing could generate substantial application
jitter [17] leading to significant slowdowns.

Source-to-source transformation techniques [18] and du-
plicated instruction execution [19], [20] methods have also
been investigated to protect application against SDC. These
techniques place significant pressure on the memory system
as bandwidth and cache volumes are halved and therefore are
not appropriate for an HPC environment. Similarly, control-
flow checking attempts to detect the effects of SDCs on an
applications [21] but does not protect against SDC unless
the bit flip changes the execution flow of the application.

VI. CONCLUSION

FlipSphere is a software SDC detection and correction
library that utilizes hashing, erasure codes and hardware
acceleration to increase application resilience. Our results
showed FlipSphere’s error detection and correction is capa-
ble of achieving up to 90% coverage with only a 40% run-
time overhead for many applications, which has significant
benefit over double (100% cost) or triple redundancy (200%
cost). FlipSphere provides error correction, in contrast to
detection only capable with dual redundancy. With costs
between 40%-85% vs. 200%, our results indicate a possible
opportunity to disable ECC for DRAM when FlipSphere
provides protection for kernels. Finally, in contrast to Li at
al. [22], FlipSphere does not require algorithmic changes for
its protection.

REFERENCES

[1] C. Chen and M. Hsiao”, “Error-correcting codes for semicon-
ductor memory applications: A state-of-the-art review,” IBM
Journal of Research and Development, vol. 28, no. 2, Mar.
1984.

[2] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors
in the wild: a large-scale field study,” in SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems,
2009.

[3] C. Di Martino, Z. Kalbarczyk, R. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system
failures at petascale: The case of blue waters,” in Dependable
Systems and Networks (DSN), Jun. 2014.

[4] V. Sridharan and D. Liberty”, “A study of dram failures in
the field,” in Supercomputing, Nov. 2012.

[5] A. Geist, “How to kill a supercomputer: Dirty power, cosmic
rays, and bad solder,” IEEE Spectrum, Feb. 2016.

[6] D. J. Fiala, “Transparent Resilience Across the Entire Soft-
ware Stack for High-Performance Computing Applications,”
Ph.D. dissertation, Noth Carolina State University (NCSU),
2015.

[7] A. Geist, “What is the monster in the closet?” Aug. 2011,
invited Talk at Workshop on Architectures I: Exascale and
Beyond: Gaps in Research, Gaps in our Thinking.

[8] D. Fiala, F. Mueller, and K. Ferreira, “Detection and correc-
tion of silent data corruption for large-scale high-performance
computing,” Dept. of Computer Science, North Carolina State
University, Tech. Rep. TR 2016-7, Jul. 2016.

[9] “Fast crc computation for iscsi polynomial using crc32 in-
struction,” White Paper, Apr. 2011.

[10] “Intel xeon phi co-processor brief,” White Paper, 2013.
[11] D. Fiala, K. Ferreira, F. Mueller, and C. Engelmann, “A

tunable, software-based DRAM error detection and correction
library for HPC,” in Workshop on Resiliency in High Perfor-
mance Computing in Clusters, Clouds, and Grids, 2011.

[12] N. Maruyama, A. Nukada, and S. Matsuoka, “Software-based
ECC for GPUs,” Jul. 2009.

[13] K. B. Ferreira, R. Riesen, R. Brightwell, P. G. Bridges,
and D. Arnold, “Libhashckpt: Hash-based incremental check-
pointing using GPUs,” in Proceedings of the 18th EuroMPI
Conference, Santorini, Greece, Sep. 2011.

[14] K.-H. Huang and J. A. Abraham, “Algorithm-based fault
tolerance for matrix operations,” IEEE Transactions on Com-
puters, vol. C-33, no. 6, Jun. 1984.

[15] Z. Chen, “Online-abft: An online algorithm based fault toler-
ance scheme for soft error detection in iterative methods,” in
Symposium on Principles and Practice of Parallel Program-
ming, 2013.

[16] P. Shirvani, N. Saxena, and E. McCluskey, “Software-
implemented edac protection against seus,” IEEE Transac-
tions on Reliability, vol. 49, no. 3, Sep. 2000.

[17] K. B. Ferreira, P. G. Bridges, and R. Brightwell, “Character-
izing application sensitivity to OS interference using kernel-
level noise injection,” in Supercomputing, Nov. 2008.

[18] M. Rebaudengo, M. Reorda, M. Violante, and M. Torchi-
ano, “A source-to-source compiler for generating dependable
software,” in Workshop on Source Code Analysis and Manip-
ulation, 2001.

[19] N. Oh, P. Shirvani, and E. J. McCluskey, “Error detection
by duplicated instructions in super-scalar processors,” IEEE
Transactions on Reliability, vol. 51, no. 1, Mar. 2002.

[20] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August, “Swift: Software implemented fault tolerance,” in
International Symposium on Code Generation and Optimiza-
tion, 2005.

[21] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow checking
by software signatures,” IEEE Transactions on Reliability,
vol. 51, no. 1, Mar. 2002.

[22] D. Li, Z. Chen, P. Wu, and J. S. Vetter, “Rethinking algorithm-
based fault tolerance with a cooperative software-hardware
approach,” in Supercomputing, 2013.


