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Abstract
Today’s largest High Performance Computing (HPC) systems exceed one

Petaflops (1015 floating point operations per second) and exascale systems
are projected within seven years. But reliability is becoming one of the major
challenges faced by exascale computing. With billion-coreparallelism, the
mean time to failure is projected to be in the range of minutesor hours
instead of days. Failures are becoming the norm rather than the exception
during execution of HPC applications.

Current fault tolerance techniques in HPC focus on reactiveways to
mitigate faults, namely via checkpoint and restart (C/R). Apart from storage
overheads, C/R-based fault recovery comes at an additionalcost in terms
of application performance because normal execution is disrupted when
checkpoints are taken. Studies have shown that applications running at a large
scale spend more than 50% of their total time saving checkpoints, restarting
and redoing lost work.

Redundancy is another fault tolerance technique, which employs redundant
processes performing the same task. If a process fails, a replica of it can take
over its execution. Thus, redundant copies can decrease theoverall failure
rate. The downside of redundancy is that extra resources arerequired and
there is an additional overhead on communication and synchronization.

This work contributes a model and analyzes the benefit of C/R in coordina-
tion with redundancy at different degrees to minimize the total wallclock time
and resources utilization of HPC applications. We further conduct experiments
with an implementation of redundancy within the MPI layer ona cluster. Our
experimental results confirm the benefit of dual and triple redundancy — but
not for partial redundancy — and show a close fit to the model. At ≈ 80, 000

processes, dual redundancy requires twice the number of processing resources
for an application but allows two jobs of 128 hours wallclocktime to finish
within the time of just one job without redundancy. For narrow ranges of
processor counts, partial redundancy results in the lowesttime. Once the
count exceeds≈ 770, 000, triple redundancy has the lowest overall cost.
Thus, redundancy allows one to trade-off additional resource requirements
against wallclock time, which provides a tuning knob for users to adapt to
resource availabilities.

1. Introduction
Today’s HPC systems are commonly utilized for long-

running application jobs that employ MPI message passing
as an execution model [16], [35]. Yet, application execution
may be interrupted by faults. For large-scale HPC, faults
have become the norm rather than the exception for parallel
computation on clusters with 10s/100s of thousands of cores.
Past reports attribute the causes to hardware (I/O, memory,
processor, power supply, switch failure etc.) as well as soft-
ware (operating system, runtime, unscheduled maintenance
interruption). In fact, recent work indicates that (i) servers
tend to crash twice a year (2-4% failure rate) [32], (ii) 1-5%
of disk drives die per year [27] and (iii) DRAM errors occur
in 2% of all DIMMs per year [32], which is more frequent
than commonly believed.
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System # CPUs MTBF/I

ASCI Q 8,192 6.5 hrs
ASCI White 8,192 5/40 hrs (’01/’03)

PSC Lemieux 3,016 9.7 hrs
Google 15,000 20 reboots/day

ASC BG/L 212,992 6.9 hrs (LLNL est.)

TABLE 1. Reliability of HPC Clusters [17]
Even for small systems, such causes result in fairly low

mean-time-between-failures/interrupts (MTBF/I) as depicted
in Table 1, and the 6.9 hours estimated by Livermore National
Lab for its BlueGene confirms this. In response, long-running
applications on HPC installations are required to support the
checkpoint/restart (C/R) paradigm to react to faults. Thisis
particularly critical for large-scale jobs: As the core count
increases, so does the overhead for C/R, and it does so at
an exponential rate. This does not come as a surprise as any
single component failure suffices to interrupt a job. As we
add system components (such as cores, memory and disks),
the probability of failure combinatorially explodes.

For example, a study from 2005 by Los Alamos National
Laboratory estimates the MTBF, extrapolating from current
system performance [26], to be 1.25 hours on a Petaflop
machine. The wall-clock time of a 100-hour job in such as
system was estimated to increase to 251 hours due to the C/R
overhead implying that 60% of cycles are spent on C/R alone,
as reported in the same study. More recent investigations [7],
[8] revealed that C/R efficiency,i.e., the ratio of useful vs.
scheduled machine time, can be as high as 85% and as low
as 55% on current-generation HPC systems.

# Nodeswork checkpt recomp. restart
100 96% 1% 3% 0%

1,000 92% 7% 1% 0%
10,000 75% 15% 6% 4%

100,000 35% 20% 10% 35%

TABLE 2. 168-hour Job, 5 year MTBF

A study by Sandia National Lab from 2009 [14] shows
rapidly decaying useful work for increasing node counts (see
Table 2). Only 35% of the work is due to computation for a
168 hour job on 100k nodes with a MTBF of 5 years while the
remainder is spent on checkpointing, restarting and then partial
recomputation of the work lost since the last checkpoint. Table
3 shows that for longer-running jobs or shorter MTBF (closer
to the ones reported above), useful work becomesinsignificant
as most of the time is spent on restarts.

The most important finding of the Sandia study is that
redundancy in computing can significantly revert this
picture. By doubling up the compute nodes so that every



job work MTBF work checkpt recomp. restart
168 hrs 5 yrs 35% 20% 10% 35%
700 hrs 5 yrs 38% 18% 9% 43%

5,000 hrs 1 yr 5% 5% 5% 85%

TABLE 3. 100k Node Job, varied MTBF
node N has a shadow node N’, a failure of primary node
N no longer stalls progress as the shadow node N’ can take
over its responsibilities. Their prototype, rMPI, provides dual
redundancy [14]. Andredundancy scales: As more nodes are
added to the system, the probability for simultaneous failure of
a primary Nand its shadow rapidly decreases. This is due to
the fact that only one node of the remaining n-1 nodes after
a failure represents the shadow node, and only failing this
node causes the job to fail — and choosing just that shadow
node becomes less likely as the number of nodes increases
(see the “birthday problem” in Section 4 for details). Of the
above overheads, the recompute and restart overheads can be
nearly eliminated (to about 1%) with only the checkpointing
overhead remaining — at the cost of having to deploy twice
the number of nodes (200,000 nodes in Table 3) and up to
four times the number of messages [14]. But once restart and
rework overheads exceed 50%, redundancy becomescheaper
than traditional C/R at large core counts.

In summary, redundancy cuts down the failure rate of the
MPI application, which result in less overhead for checkpoint-
ing and repeated execution. The downside is that additional
computing resources are required depending on the degree of
redundancy, i.e, dual (2x), triple (3x) or some partial level of
redundancy (1.5x, 2.5x). There is also an increase in the total
execution time due to redundant communication.

Contributions: In this work, we try to answer following
questions: (1) Is it advantageous to use both C/R and re-
dundancy at the same time to improve performance or job
throughput? (2) What are the optimal values for the (partial)
degree of redundancy and checkpoint interval to achieve the
best performance?

HPC users, depending on their needs, may have different
goals. The primary goal of the user may be to complete
application execution in the smallest amount of time. Other
users may want to execute their application with the least
number of required resources. A user may also create a cost
function giving different weights to execution time and number
of resources used.

We derive a mathematical model to analyze the effect of
using both redundancy and checkpointing on the execution
time of the application. Using this model, we identify the best
configuration to optimize the cost of executing the application.
We further conduct experiments with an implementation of
combined C/R and redundancy within the MPI layer on a
cluster. These experimental results confirm the benefit of dual
and triple redundancy and show a close fit to the model. Partial
redundancy where just a subset of nodes are replicated only
has a narrow window of applicability.

2. Background
A widely researched topic in HPC is to mitigate the effects

of faults occurring during the execution of an application.

Individual faults are generally classified into permanent,tran-
sient, and intermittent [1]. A permanent fault is a fault that
exists until it is repaired. A transient fault is a fault thatexists
for a finite time and disappears at an unknown frequency.
Intermittent faults occur and disappear at a known frequency.

A parallel HPC system is composed of a number of system
components with processes that cooperate to solve a single
job. The system components (nodes) are coupled via commu-
nication so that the failure of one process can lead to failure
of the entire job. Process failure is often classified into one of
the following categories [10]:

(1) Fail-stop failure: when the process completely stops,
e.g., due to system crash. (2) Omission failure: if a process
fails to send or receive messages correctly. (3) Byzantine
failure: when a process continues operating but propagates
erroneous messages or data. Byzantine failures are usually
caused by soft errors resulting from radiation.

In this work, we focus on the issues emanating from fail-
stop process failures. Detection and correction of Byzantine
errors using software redundancy and voting are beyond the
scope of this paper.

Fault tolerance uses protective techniques to provide a
resilient computing environment in the presence of failures.
These techniques can be broadly classified into Algorithm-
Based Fault Tolerance (ABFT), message logging, check-
point/restart and replication/redundancy. ABFT requiresspe-
cial algorithms that are able to adapt to and recover from pro-
cess loss due to faults [19]. ABFT is achieved by techniques
such as data encoding and algorithm redesign. MPI-based
ABFT applications require resilient message passing. E.g.,
FT-MPI [12] continues the MPI task even if some processes
are lost. Applications that follow a master/slave programming
paradigm can be easily adapted to ABFT applications [22].

Message logging techniques record message events in a
log that can be replayed to recover a failed process from its
intermediate state. All message logging techniques require the
application to adhere to the piecewise deterministic assumption
that states that the state of a process is determined by its initial
state and by the sequence of messages delivered to it [30].

Checkpoint/restart (C/R) techniques involve taking snap-
shots of the application during failure-free operation in a
synchronous fashion and storing them to stable storage. Upon
failure, an application is restarted from the last successful
checkpoint. Stable storage is an abstraction for some storage
devices ensuring that recovery data persists through failures.

Checkpoint Restart: The C/R service supported by MPI
runtime environments utilizes a single-process checkpoint ser-
vice specified by the user as a plug-in facility. Depending
upon the transparency with regard to the application program,
single-process checkpoint techniques can be classified as ap-
plication level, user level or system level.Application-level
checkpoint services interact directly with the application to
capture the state of the program [33].User-levelcheckpoint
services are implemented in user space but are transparent
to the user application. This is achieved by virtualizing all
system calls to the kernel, without being tied to a particular



kernel [24]. System-levelcheckpointing services are either
implemented inside the kernel or as a kernel module [9].
The checkpoint images in system-level checkpointing are not
portable across different kernels. for our experiments, weused
Berkeley Lab Checkpoint Restart (BLCR) [9], a system-level
checkpoint service implemented as a Linux kernel module.

The state of a distributed application is composed of states
of each individual process and all the communication channels.
Checkpoint coordination protocols ensure that the states of the
communication channels are consistent across all the processes
to create a recoverable state of the distributed application.
These protocol events are triggered before the individual pro-
cess checkpoints are taken. A distributed snapshot algorithm
[4], also commonly known as Chandy-Lamport algorithm, is
one of the widely used coordination protocols. This protocol
requires every process to wait for marker tokens from every
other process. After a process receives tokens from every
other process, it indicates that the communication channel
between the process and every other process is consistent. At
this point, this process can be checkpointed. The checkpoint
coordination protocol implemented in OpenMPI [20] is an
all-to-all bookmark exchange protocol. Processes exchange
message totals between all peers and wait until the totals
equalize. The Point-to-point Management Layer (PML) in
OpenMPI tracks all messages moving in and out of the point-
to-point stack.

As expected, the C/R techniques come at an additional cost
since performing checkpoints interrupts the normal execution
of the application processes. Additional overhead is incurred
due to sharing of processors, I/O storage, network resources,
etc. When assessing the cost of C/R fault tolerance techniques,
we must consider the effect on both the application and
the system. Checkpoint overhead accounts for the increase
in execution of the application due to the introduction of
a checkpoint operation [28], [34]. Checkpoint latency is the
time required to create and establish a checkpoint to a stable
storage. Various optimization techniques have been studied to
improve both forms of overhead as described below.

Forked checkpointingforks a child process before the
checkpoint operation is performed [5], [33]. The image of
the child process is taken, while the parent process resumes
execution. Afterward, the pages that have changed since the
fork are captured from the parent process, thereby reducing
the checkpoint overhead.

Checkpoint compressionis a method for reducing the check-
point latency by reducing the size of process images before
writing them to stable storage [33], [23].Memory exclusion
skips temporary or unused buffers to improve checkpoint
latency [29]. This is done by providing an interface to the
application to specify regions of memory that can be safely
excluded from the checkpoint [2].Incremental checkpointing
reduces the checkpoint latency by saving only the changes
made by the application from the last checkpoint. These
techniques commonly rely on hardware paging support, e.g.,
the modified or dirty bit of the MMU [15], [18]. During
recovery, incremental checkpoints are combined with the last

full one to create a complete process image.
Redundancy: To decrease the failure rate for large-scale

applications, redundancy can be employed at the process level
[14], [21]. Multiple copies (or replicas) of a process run
simultaneously, so that if a process stops performing its desired
function, a replica of the process can take over its computation.
Thus, a distributed application can sustain failure of a process
if redundant copies are available. An active node and its
redundant partners form a node sphere that is considered to fail
if all the nodes in the sphere become non-functional. Overall,
redundancy increases the mean time between failures (MTBF).
This allows us to checkpoint less frequently while retaining
the same resiliency level.

rMPI [14] developed at Sandia National Laboratories is a
user-level library that allows MPI applications to transparently
use redundant processes. MR-MPI [11] is a modulo-redundant
MPI solution for transparently executing HPC applications
in a redundant fashion that uses the PMPI layer of MPI.
VolpexMPI [21] is a MPI library implemented from scratch
that supports redundancy internally with the objective to con-
vert idle PCs into virtual clusters for executing parallel applica-
tions. In Volpex MPI, communication follows the pull model;
the sending processes buffer data objects locally and receiving
process contact one of the replicas of the sending process to
get the data object. RedMPI is another user-level library that
uses the PMPI layer to implement wrappers around MPI calls
and provide transparent redundancy capabilities. RedMPI is
capable of detecting corrupt messages from MPI processes
that become faulted during execution. With triple redundancy,
it can vote out the corrupt message and thereby provide the
error-free message to the application. The library operates in
one of the two modes: All-to-all mode or Msg-PlusHash mode.
In All-to-all mode, complete MPI messages are sent from each
replica process of the sender and received by each replica of
the receiver process. In contrast, one complete MPI message
from a sender replica and a hash of the message from another
replica is received by the receiver process in Msg-PlusHash
mode. We used the RedMPI redundancy library with its All-
to-all mode in this work for experiments.

3. Design
The RedMPI library is positioned between the MPI applica-

tion and the standard MPI library (e.g., OpenMPI, MPICH2).
It is implemented inside the profiling layer of MPI and
intercepts all the MPI library calls made by the application.
No change is needed in the application source code. The
redundancy module is activated by MPIInit(), which divides
the MPI COMM WORLD communicator into active and re-
dundant nodes.

To maintain synchronization between the redundant pro-
cesses, each replica receives exactly the same messages in
the same order. This is ensured by sending/receiving MPI
messages to/from all replicas of the receiver/sender process.

Consider the scenario shown in Figure 1(a), where A sends
a message via MPISend() to process B while Process B issues
a blocking receive operation via MPIRecv(). Process A has



(a) Redundancy (b) Partial Redundancy
Fig. 1. Blocking Point to Point Communication

2 replicas, A and A’, similarly process B has 2 replicas, B and
B’. Corresponding to this send operation, process A performs
a non-blocking send to each of the replicas of the destination
process, B and B’. Only after both these sends have been
completed is the send performed by the application considered
complete. The redundant partner of A, A’, performs exactly the
same operations.

At the receiver side, process B posts two receive calls,
one receive from A and other from A’. In the general case,
a process posts receives from all redundant partners of the
sender processes that are alive. The RedMPI library allocates
additional buffers for receiving redundant copies. When all
receives are complete, the message from one of the buffers
is copied to the application-specified buffer before returning
control to the application.

Figure 1(b) depicts the sequence of steps that take place
when partial redundancy is employed. Here, process A has
two replicas while process B has just one. Hence, process B
receives two messages via two MPIRecv() calls. On the other
hand, processes A and A’ send just one message each to the
single copy of process B.

Special consideration is required for wildcard receives
(MPI ANY SOURCE). Since a message sent from any pro-
cess can complete a wildcard receive request, we have to make
sure that all the replicas of the process get the message from
the same “virtual” sender. To ensure this, RedMPI performs
the following steps:

(1) On the receiving node B, only one receive operation
with tag MPI ANY SOURCE is posted.

(2) When this call completes, the receiver information is
determined and is sent to node B’ (if it exists). Also, another
receive is posted to determine the message from the remaining
replicas of the sender process.

(3) Node B’ uses this envelope information to post a specific
receive call to obtain the redundant message from the node that
sent the first message to B.

The MPI specification requires that non-blocking MPI calls
return a handle to the caller for tracking the status of the cor-
responding communication. When redundancy is employed,
corresponding to a non-blocking MPI call posted by the
application, multiple non-blocking MPI calls are posted for
each replica of the peer process. RedMPI maintains the set of

request handles returned by all the non-blocking MPI calls.A
request handle that acts as an identifier to this set is returned
to the user application. When the application, at a later point,
issues a call to MPIWait(), RedMPI waits on all the requests
belonging to the set before returning from the call.

4. Mathematical Analysis
We make the following assumptions in our model about the

execution environment: (1) Studies [31] have shown that the
failure rate of a system grows proportional to the number of
sockets in the system. Researchers usually consider a socket
as a unit of failure and refer to the number of sockets when
measuring system reliability. But for simplicity and to abstract
away machine specific details from the discussion, we refer to
nodesin this work. Here, anoderefers to an execution unit
that fails independently. Most commonly, the termnodeis used
interchangeably withsocket. (2) Each process of the parallel
application is allotted a separate node. Spare resources are
used for performing redundant computation. This means thatif
an application runningN processes moves to 2x redundancy, it
now utilizes2N processes on twice the number of nodes. This
assumption guarantees that redundancy does not slow down
the computation of the application. (3) Node failures follow
a Poisson process. The interval between failures is given by
an exponential distribution. (4) The failure model is that of
fail-stop behavior. This is the most frequent failure type in
practice that can be detected via timeout-based monitoring.
Other failure models are beyond the scope. (5) Spare nodes
are readily available to replace a failed node. This gives an
implied assumption that failures can occur anytime between
the start and the end of application execution, i.e., failures can
occur even when a checkpoint is taken or when the application
is restarted after a failure.

4.1. Degree of Redundancy and Reliability
When redundancy is employed, each participating appli-

cation process is a sphere of replica processes that perform
exactly the same task. The replicas coordinate with each other
so that another copy can readily continue their task after failure
of a copy. The set (sphere) of replica processes, performing
the same task and hidden from each other at the application
level, is called a virtual process. The processes inside a sphere
are called “physical processes”.



Here, we present a qualitative model of the effect of
redundancy on reliability of the system. Reliability of a system
is defined as the probability that the given system will perform
its required function under specified conditions for a specified
period of time.

The analysis that follows applies not only to MPI-based
applications but to any parallel applications where failure of
one or more participating processes cause failure of the entire
application.

Consider such a parallel application with the following
parameters:

N : number of virtual processes involved in the application;
M : number of virtual messages within the application;
r: redundancy degree (number of physical processes per

virtual process);
t: base execution time of the application;
θ: Mean Time to Failure (MTBF) of each node.
(1) As discussed before, due to the overhead of redundancy,

the time taken by the application due to redundancy is greater
than the base execution time. The overhead depends on many
factors, including communication to computation ratio of the
application, degree of redundancy, placement of replicas and
relative speed of the replica processes. It is very difficultto
construct an exact formula to represent the overhead in terms
of the degree of replication. In the analysis developed here,
we consider overhead due to redundant communication but
ignore overheads caused by other factors, such as redundant
I/O (which is not supported by RedMPI and not triggered in
experiments).

Let α be the communication/computation ratio of the ap-
plication. Hence,(1 − α) is the fraction of the original
time t required for computation. This time remains the same
with redundancy since only communication is affected by
redundancy. The remaining time, namelyα · t, is the time
required for communication, which is affected by redundancy.

All collective communication in MPI is based on point-
to-point MPI messages (except when hardware collectives
are used). The redundancy library interposes the point-to-
point calls and sends/receives to/from each copy of the virtual
process. Thus, each point-to-point MPI call is translated into
r point-to-point MPI calls per physical process, wherer is the
redundancy level (e.g., 2 or 3).

Hence, the total number of point-to-point MPI calls per pro-
cess with redundancy isr times the number of MPI point-to-
point calls per process in plain (non-redundant) execution. This
implies that the total communication time with redundancy is
r ·α · t. The total execution time with redundancy can then be
expressed as tRed = (1 − α)t + αtr. (1)

(2) As per the assumption, the arrival of failures for each
node follows a Poisson process. Hence, if the probability ofa
process failing before timet is F (t), then the reliability of the
process, which is the probability that the process survivesfor
time t, is R(t) = 1−F (t). It is widely accepted that electrical
devices in its mid-life (neither in the early stages of use nor
near end-of-life) follow an exponential distribution [37]. Under

this assumption, the reliability of a node has the formR(t) =
e−λt with failure rateλ and mean time to failureθ = 1/λ.
The probability of failure before timet is

Pr(Failure) = 1 − e
−t

θ . (2)
When θ is large,e−t/θ may be approximated asR(t) = 1 −
t/θ. Hence, the probability that a single node fails before time
t is Pr(Node Failure) = 1 − (1 − t/θ) = t/θ. (3)

Next, assuming we have a node with a positive integer
k level of redundancy and all node failures are independent
and identically distributed, then the probability that thenode
survives until timet is 1 − Pr(all redundant copies fail),
which is

Rred(t) = 1 −
k

∏

i=1

t/θ = 1 − (t/θ)k (4)

(3) Mapping partial redundancy to a real system is quite
different from a traditional redundancy model as we may not
have a system with homogeneous failure rates, which occurs
only when r ∈ Z

+ . Given that the user providesN real
processes, we must partition theseN virtual nodes into sets
indicating their real-world redundancy levels, which in turn
maps to a subsystem of homogeneous failure rates. To begin,
we partitionN into two sets

N = N⌊r⌋ + N⌈r⌉, (5)
and assuming that thefloor and ceiling operators have the
property that ifi ∈ Z

+, then⌊i⌋ = ⌈i⌉ = i, we define
N⌊r⌋ = ⌊(⌈r⌉ − r)N⌋ , and (6)
N⌈r⌉ = N − N⌊r⌋. (7)

Note the special case whenr ∈ Z
+, thenN⌊r⌋ = 0 and we

have a system withN virtual processes that all share the same
failure rate. The total number of processes required to operate
the system atr redundancy is then

Ntotal = N⌈r⌉ × ⌈r⌉ + N⌊r⌋ × ⌊r⌋ , (8)
recognizing thatNtotal ≤ N × r, as a fraction of a process is
nonexistent.

(4) Using Eq. 4, and the two setsN⌊r⌋ and N⌈r⌉, the
reliability of the system is

Rsys =Pr(all virtual processes survive) ,
=Pr

(

all N⌊r⌋ survive and all N⌈r⌉ survive
)

,

=[1 − (tRed/θ)(⌊r⌋)](N⌊r⌋) ·[1 − (tRed/θ)(⌈r⌉)](N⌈r⌉)

(9)
(5) The reliability can be written in terms of failure rate (λ)

as R(t) = e−λt. Using Eq. 9, the failure rate and MTBF of
the system can be obtained as
λsys = − ln(Rsys)/tRed, and Θsys = 1/λsys. (10)
Figure 2 shows how varyingr (the degree of redundancy)

changes the reliability of the entire system, given the indicated
sample input parameters. To begin, consider the dashed-dotted
line with node MTBFθ = 2.5 years and the dashed line with
node MTBF θ = 5 years. In this case, the node reliability
alone demands triple redundancy whenθ = 2.5, whereas with
theta = 5 partial redundancy may be suitable. Next, consider
the solid and dash-dotted lines whereα is varied. The impact
of α may be interpreted as efficiency, as the curve with lowest
α spikes faster (dotted line) and maintains a more linear curve
afterwards. Conversely, for larger communication/computation
ratios (α), the slope decreases so that more potential for partial
redundancy exists. Not shown is the impact oft, which shifts
the curves to the right.
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Fig. 2. Effect of Redundancy on Reliability

4.2. Effect of Checkpointing on Execution Time
Checkpointing does not affect the reliability of the system,

i.e., it does not improve the mean time between failures, but
it avoids the need to restart the process from the beginning
by capturing the state of the application at an intermediate
execution state.

As discussed earlier, performing checkpoints comes at a
cost. Each checkpoint taken has certain overheads depend-
ing on various parameters including the number of parallel
processes, time taken to synchronize the processes and time
taken to store checkpoints to stable storage. The minimum
number of checkpoints should be performed so as to reduce
these overheads.

Another consideration while choosing a checkpoint interval
is that it determines the average time for repeated execution
after a failure. The greater the checkpoint interval, the more
rework needs to be performed after a failure to return the
application to the state at which a failure occurred.

Consider an application with the following parameters:
• t: time to complete the original application without failures;
• λ: system failure rate (number of failures per unit time);
• δ: checkpoint interval (time between successive check-
points);
• c: time required for a single checkpoint to complete;
• Θ: MTBF of the entire system computed from Eq. 10;
• R: restart overhead accounting for the time taken to read
checkpoint images, instantiation of each application process,
coordination between processes, etc.;
• Ttotal: total time taken for completion, i.e., time after which
‘t’ amount of actual work is performed.

Figure 3 shows the lifetime of a process in the presence of
periodic checkpointing and occurrence of failures.

Fig. 3. Life-cycle of an application
Number of failures: Failures can occur anytime during the

execution of the application, including the restart and rework
phases. Hence, the entire execution time of the application,
Ttotal, is susceptible to failures. Letnf be the number of
failures that occur till the application completes, which can

be calculated as
nf = Total time× Failure rate= Ttotalλ. (11)

The total time (T) of running an application is the sum of:
(1) The time taken by the application to perform actual

computation = t.
(2) The total time taken to perform checkpoints until the end

of task. We assume that there is no information available about
impending failures through a monitoring or feedback system.
Instead, we periodically checkpoint at a constant intervalof
δ. This time is equal to (number of checkpoints)× (overhead
per checkpoint) or

(Total Time)/(Checkpoint interval)× c = (t/δ)c.

(3) The total restart time derived from the total number of
failures during the lifetime of the application and the expected
amount of restart time. Since failures can occur even when the
application is undergoing restart, the average time spent in a
single restart phase is less than the maximum possible time,
R, of a restart phase.

(4) The total rework time, i.e., the total time spent on recom-
puting lost work. The amount of lost work depends on the time
at which a failure occurs after a checkpoint is established and
also the likelihood of failure during checkpointing (handling
multiple failures, incl. failures during recovery). We will use
the termtlw to denote the expected amount of work lost due
to failures.

Since after the occurrence of a failure restart is always
followed by rework, we can combine them into a single phase.
The expected duration of this phase is thenR + tlw, which
we denote astRR.

Before derivingtRR, let us find the average amount of work
that could be lost due to failure during computation. Recalltlw
is this expected value, i.e., the expected time at which a failure
occurs after a checkpoint is taken.

The computation time of the application can be divided into
segments of lengthδ + c. Each segment consists of a work
phase (length=δ) followed by a checkpoint phase (length=c).
The lost work depends on the time at which a failure occurs
after the start of a segment. Letδc = δ+c. The PDF describing
the probability of failure occurring at timet from the start of
a segment can be calculated as

p(t) =
1

Θ
e

−t

Θ +
1

Θ
e

−(t+δc)
Θ +

1

Θ
e

−(t+2δc)
Θ +· · · =

e
−t

Θ

Θ(1 − e
−δc

Θ )
.

When a failure occurs at time0 ≤ t ≤ δ, the lost work
is also t. When a failure occurs at timeδ < t ≤ δc (during
checkpointing), lost work isδ. Hence, the expected time for
lost work can be calculated as

tlw =

∫ δ

0

t · p(t) dt +

∫ δc

δ

δ · p(t) dt.

Solving the above integral yields

tlw =
1

(

1 − e
−δc

Θ

)

[

Θ − Θe−
δ

Θ − δe−
δc

Θ

]

. (12)

After the occurrence of a failure, the application begins in
the restart phase, which takesR time followed bytlw rework



time. As mentioned earlier, we combine these two phases into
a single phase with expected duration:R+ tlw. The derivation
of the expected time of this phase,tRR, is presented below.

The reliability of a system, i.e, the probability of survival
until time t is e

−t

Θ . This implies that the probability of a system
failing before timeR + tlw is

1−Pr(system survives up to time R + tlw) = 1−e
−(R+tlw)

Θ .

This also implies that the probability of failure after time(R+

tlw) is e
−(R+tlw)

Θ . This is the probability that the application
completes restart andtlw amount of rework.tRR can now be
calculated as

tRR = Pr(failure before R + tlw)
× (expected time of failure in interval 0 toR + tlw)
+ Pr(failure after R + tlw) × (R + tlw),

tRR = (1 − e
−(R+tlw)

Θ )

∫ R+tlw

0

t · 1

Θ
e

−t

Θ dt

+ e
−(R+tlw)

Θ · (R + tlw),

tRR =
(

1 − e−
(R+tlw)

Θ

) [

−e−
(R+tlw)

Θ (R + tlw + Θ) + Θ
]

+ e−
(R+tlw)

Θ · (R + tlw) . (13)

Thus, the total time spent in rework and restart during the
entire run of the application is

TotalRR = (Number of failures)× tRR = TtotalλtRR.

The total time taken by the application can be written as
Ttotal = t + tc

δ + TtotalλtRR,

Ttotal =
t + tc

δ

(1 − λtRR)
. (14)

It is easy to understand that there is a trade-off between the
interval between checkpoints, i.e.,δ, and the checkpoint/restart
overhead. Too low a checkpoint interval leads to unnecessary
checkpoints and thus higher overheads. But a very high
checkpoint interval leads to greater loss of computation due
to failures. Thus, we need to choose the checkpoint interval
that minimizes overhead.

Instead of deriving our own optimum checkpoint interval,
and to simplify the analysis, we use Daly’s optimal checkpoint
interval [6]:

δopt =
√

2cΘ

[

1 +
1

3
(

c

2Θ
)1/2 +

1

9
(

c

2Θ
)

]

− c. (15)

We then evaluate our model withr = 1 and Daly’s model,
both usingδopt, and find that both models perform similarly
(plots omitted due to space).

4.3. Combining Redundancy and Checkpointing
Employing redundancy helps to increase the reliability of

the system. But even a high degree of redundancy does not
guarantee failure free execution, though it certainly decreases
the probability of failure: The probability of simultaneous
failure of a node and its replica is equivalent to the “birthday
problem”[13]. This can be approximated asp(n) ≈ 1 −
(n−2

n )n(n−1)/2 for n nodes, which very rapidly approaches
zero for increasingn, i.e., lim

n→∞
p(n) = 0. Thus, we still

need to checkpoint so that an application can be recovered
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Tmin = 163; Chkpts = 26; λ = 0.0002
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Fig. 4. Configuration 1: Total Execution Time with Varying
Degree of Redundancy

after a failure instead of having to re-run the application
from the start. Eq. 14 shows that the time required for
application completion increases as the failure rate increases
(equivalently, the MTBF decreases). From Eq. 10, we see
that with redundancy we can decrease the failure rate of the
system and thus decrease the checkpointing frequency, which
ultimately results in less checkpointing overhead and faster
execution of the application.

Let us assess the effect of this hybrid approach qualitatively.
Using Eqs. 1, 10, and 14, we simulated various completion
times obtained using various configurations. The figures below
are annotated with several statistics pertaining to the minimum
run timeTmin, the maximum runtimeTmax, and the runtime
with no redundancyTr=1. Chkpts refers to the expected
number of checkpoints, whileλ indicates the failure rate for
this particular data point. One may compute the expected
number of failures by substitutingλ and the runtime into
Eq. 11.

Figures 4-6 show the variation in total time over varying
degrees of redundancy of an application for an original running
time of 128 hours with different MTBFs andαs. Immediately
apparent from the figures is that a redundancy level of 2 is
the best choice in all cases. Comparing Figures 4 and 6,
the only change was in the checkpoint write timec. In
Figur 6, considering pointr = 1, the expected number of
checkpoints is1, 163, indicating that checkpoints contributed
≈ 19.34 hours to the total runtime, whereas in Figure 4, when
r = 1 the expected number of checkpoints is458, indicating
that checkpoints contributed≈ 76.3 hours to the runtime.
This illustrates the benefit of choosing the checkpoint interval
carefully, solving Eq 15 for both figures atr = 1 yields
δ = 22.9 for Figure 4, andδ = 7.2 in Figure 6. Examination
of Daly’s formula reveals thatδopt from Figure 4 is roughly
magnified by

√
10.

5. Experimental Framework
Some assumptions and approximations had to be made

while performing the mathematical analysis. The most sig-
nificant one is in Equation 1 and relates to the degree of
redundancy and total execution time. Here, we omitted the
overheads originating from factors such as placement of repli-
cas and relative speeds of replica processes. It is expected
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Fig. 6. Configuration 3: Total Execution Time with Varying
Degree of Redundancy
that in a real execution environment the outcome observed
will differ to some extent from those in Figures 4-6 in the
previous section.

To validate the mathematical analysis of the previous
section, we collected empirical data by running benchmark
applications in an HPC environment. Though the study per-
formed in this work is targeted towards exascale computing,
computing systems at such a large scale are not available
today. Hence, we run the application to the maximum scale
possible on resources available to us. Node failures are injected
instead of waiting for actual failures. We scale down the MTBF
per node according to the number of nodes available and the
execution time of application so that the application suffers a
sufficient number of failures to analyze the combined effect
of C/R and redundancy. We run the application with a certain
degree of redundancy and also checkpoint the application at
the optimum frequency calculated from Eq. 15. Two processes
run in the background of the application with the following
functionality: The first background process is the failure
injector that triggers failures for the entire applicationbased
on per-process failures. The occurrence of a failure for each
process is assumed to be a Poisson process.

The failure injector performs the following steps: (1) It
maintains a mapping of virtual to physical processes. The
status of each physical process at a particular time is either
dead or alive. (2) For each physical process in the MPI
environment, the time for the next failure is calculated using
an exponential distribution that describes the time between

events of a Poisson process. (3) As and when the failure time
of a physical process is reached, the mapping is updated by
marking the process as dead. (4) If all the physical processes
corresponding to a virtual process have been marked dead,
application termination is triggered followed by a restartfrom
the last checkpoint.

Figure 7 shows how failure of a physical process does
not necessarily imply a failure of the MPI application. The
application fails and a restart is triggered only when all the
physical processes corresponding to a virtual process fail. The

Vrank=0 Vrank=1 Vrank=2 Vrank=3

Process 
failure

Restart

Application 
failure

- Virtual Process - Physical Process

0 4 1 5 8 2 6 3 7

Fig. 7. Failure Injection within MPI Applications
second background process is a checkpointer that calculates
the optimal checkpoint intervalδ using Equations 15 and 10.
It sets a timer for timeδ and checkpoints the application when
the timer goes off.

6. Results
Experimental platform: Experiments were conducted on

a 108 node cluster with QDR Infiniband. Each node is a
dual socket shared-memory multiprocessor with two octo-core
AMD Opteron 6128 processors (16 cores per nodes). Each
node runs CentOS 5.5 Linux x86 64. We used Open MPI
1.5.3 for running our experiments and BLCR as the per-
process checkpointing service. The RedMPI library is used
for performing redundant computation.

We chose the CG benchmark of the NAS parallel bench-
marks (NPB) suite as a test program. CG stands for con-
jugate gradient. It is used to compute an approximation to
the smallest eigenvalue of a large sparse symmetric positive
definite matrix. This kernel is typical of unstructured grid
computations in that it tests irregular long distance commu-
nication employing unstructured matrix vector multiplication.
Since this study is targeted towards long running applications,
we need an application that runs long enough to suffer a
sufficient number of failures to assess its behavior in a failure
prone environment. Hence, the CG benchmark was modified
to run longer by adding more iterations. This was done by
repeating the computation performed between MPIInit() and
MPI Finalize() callsn number of times. This modified CG
class D benchmark with 128 processes takes 46 minutes
under failure free execution without redundancy and C/R.
Larger inputs would become infeasible (require weeks of
experiments). Processes were pinned onto 14 cores per node



for application tasks leaving one core each for the operating
system and runtime activities.

The MTBF of a node was chosen between 6 hours and
30 hours, with an increment of 6 hours. A MTBF/node of 6
hours gives a high failure rate of≈ 20 failures per hour, while
MTBF/node of 30 hours gives a lower failure rate of 4 failures
per hour. We ran the application with the injector initiallywith-
out redundancy and then with double and triple redundancy.
To denote redundancy degrees we use the notation “rx” to
signify that there arer physical processes corresponding to a
virtual process. For example, 2x redundancy means that there
are 2 physical processes corresponding to a virtual process.
Experiments were also performed with partial redundancy,
i.e., some processes have replicas, while some have just one
primary copy. For example, a redundancy degree of 1.5x
means that every other process (i.e., every even process) has
a replica. Partial redundancy was assessed in steps of 0.25x
between 1x and 3x.

The results of the experiments for the optimal application
execution time using various degrees of redundancy is shown
in Table 4. The minimum time taken by the application for
each value of MTBF is highlighted in the table. As seen
from the results, the minimum application execution time
(best performance) with MTBF of 6 hours is obtained at
3x redundancy. When the MTBF is 12 hours, the maximum
performance is seen at 2.5x redundancy. Yet for a MTBF of
18, 24 and 30 hours, the maximum performance is achieved
at 2x redundancy. Figures 8 and 9 show these results in the
form of line graphs and surface graphs, respectively. As the
surface graph shows, local minima exist at different points
of the surface indicating an intricate interplay of MTBF and
redundancy with respect to overall performance.

MTBF Degree of Redundancy
1x 1.25x 1.5x 1.75x 2x 2.25x 2.5x 2.75x 3x

6 hrs 275 279 212 189 146 158 139 132 123
12 hrs 201 207 167 143 103 113 98 111 125
18 hrs 184 179 148 120 72 126 88 80 84
24 hrs 159 143 133 100 67 92 78 84 83
30 hrs 136 128 110 101 66 73 80 82 84

TABLE 4. Application Performance (Execution Time
[Minutes]) for Combined C/R+Redundancy
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Fig. 9. Surface Plot of Application Performance (Execu-
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We make the following observations from the above results:
(1) For a high failure rate or, equivalently, lower MTBF

(e.g., 6 hours), the minimum total execution time (best perfor-
mance) is obtained at higher redundancy levels (> 3x here).

(2) For lower failure rates (e.g., 24 hours and 30 hours) the
minimum total execution time (best performance) is achieved
at a redundancy level of 2x. Increasing the redundancy degree
further has adverse effects on execution time.

(3) The minimum execution time (best performance) can
also be achieved at partial redundancy levels, e.g. for a MTBF
of 12 hours. Here, the maximum performance is obtained when
2.5x redundancy is employed.

(4) An interesting finding is that in most cases 1.25x
redundancy yields poor performance compared to 1x (when
no redundancy is employed). Similarly, 2.25x yields poor
performance compared to 2x redundancy. This behavior can
be attributed to a higher increase in redundancy overhead in
return for a smaller decrease in failure rate as we move from
1x to 1.25x (or from 2x to 2.25x). To support this argument,
a separate experiment was carried out to calculate the failure-
free execution time with increasing redundancy levels. The
results are shown in Table 5 and Figure 10. It can be seen that
the rate of increase in execution time is larger in the first step
(i.e., from 1x to 1.25x) while there is a decrease in the rate in
the subsequent steps.

(5) The purpose of these experiments is to verify the
mathematical model developed in Section 4. Hence, we mod-
eled our execution by estimating/calculating the environment
parameters and substituting them in the set of equations
developed in Section 4.3. There is a subtle difference in the
experimental setup and our model discussed in Section 4.3.
While running the application, failures are not triggered when
a checkpoint is performed or when restart is in progress.
Our model, though, considers failures at any time, including
checkpointing and restart. We simplified our model to match
our experiments, which results in the following time function:



Degree of Redundancy 1x 1.25x 1.5x 1.75x 2x 2.25x 2.5x 2.75x 3x
Observed increase in execution time46 55 59 61 63 70 76 78 82

Expected linear increase 46 48 51 53 55 58 60 62 64

TABLE 5. Increase in Execution Time with Redundancy

Fig. 10. Increase in Execution Time with Redundancy

Ttotal = tRed + tRed

√
2cΘ + tRedλsysR. We have used this

equation for modeling the application behavior in the presence
of C/R and redundancy. This simplified model pertains just to
this sub-section, specifically to Figures 11 and 12.

The overhead per checkpointc was calculated as 120 sec.
by first running the plain application, then running it with
one checkpoint taken during execution, and calculating the
difference between the later and former execution times. Time
taken to restart the application after a failure and beginning of
re-execution (restart overhead, R) was measured as approx.
500 sec. The CG benchmark, on average, spends 20% of
the total time in MPI communication, so the communication
to computation ratio (α) is 0.2. Plotting the equations in
MATLAB, we get the expected application behavior shown
in Figure 11. It can be seen that the actual behavior of the
application (Figure 8) is similar to the modeled behavior
shown in Figure 11, thus validating our analytic model. For
closer comparison, Figure 12 overlays the performance curves
in Figure 11 over those in Figure 8 for selected MTBF
values. The trend followed by the observed curves is very
similar to the modeled curves, and a Q-Q plot of the modeled
and observed values indicates a close fit. However, we see
some absolute differences in the execution times that can be
attributed to various causes:

(a) The redundancy overhead in actual runs is higher than
the modeled overhead (see Figure 10). The increase in the
execution time is due to additional failures occurring during
this extra time. (b) The fault injector generates failures by
using inputs from a random number generator that follow a
Poisson distribution. The application running time may notbe
long enough for the observed failure rate to converge to the
average failure rateλ.

Simulations: We also performed simulations using our
analytic model to determine at which point an application
begins to benefit from redundancy. Figure 13 depicts the
execution time of a 128 hour job for different redundancy
levels and number of processes (with a factor of 10,000 on
the latter/x-axis) under weak scaling, i.e., the problem size is
scaled at the same rate as the number of processes resulting
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Fig. 11. Modeled Application Performance
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Fig. 12. Observed vs. Modeled Performance
in a constant compute overhead per process. The cross-over
points between no redundancy (1x) and dual redundancy (2x)
at 4, 351 processes and triple redundancy (3x) at12, 551 pro-
cesses indicate an early benefit for combined C/R+redundancy.
When it is not always feasible to minimize runtime due to
resource scarcity, resilience may still be improved through
partial redundancy as a tunable knob (e.g., 1.5x or 2.5x).
Contrary to our experiments with smaller processor counts,
partial redundancy never results in the lowest completion time
for the given settings.
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Fig. 13. Modeled Wallclock Time of a 128 Hour Job for
Different Redundancy Levels up to 30k Nodes

Using additional nodes for redundancy is a cost, while



gaining a shorter execution time is a benefit: The nodes
become available sooner and can be used for other jobs.
Hence, when the runtime with redundancy is twice that of
dual redundancy at78, 536 processes, we can actually run
two dual redundant jobs of 128 hours in the time of just one
job without redundancy (see Figure 14). This indicates that
redundancy is a powerful technique to increase the utilization
of exascale HPC installation for capacity computing (where
job throughput is the objective). It does not provide a solution
to capability computing (where all nodes are utilized by a
job without redundancy), which presents an open problem to
resilience handling of exascale systems. The figure further
underlines that pure C/R without redundancy results at ex-
ponential increases in execution time after≈ 80, 000 nodes.
Once the counts exceeds771, 251 (beyond the shown range),
triple redundancy has the lowest overall cost.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

100

200

300

400

500

600

700

MTBF/node θ = 5 years, t = 128 hours,
c = 10 min., R = 10 min., α = 0.2

Number of Processors (N)

C
o
m

p
le

ti
o
n

T
im

e
(T

to
ta

l)

 

 
1x 1.5x 2x 3x

Degree of Redundancy r

Fig. 14. Modeled Wallclock Time of a 128 Hour Job for
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7. Related Work
Several models to determine the optimal checkpointing

strategy for parallel programs have been developed in prior
works. Young [38] presented an optimal checkpoint and re-
covery model and obtained a constant optimal checkpoint
interval to reduce the overall execution time. Based on Youngs
work, Daly [6] improved the model to an optimal checkpoint
placement from a first order to a higher order approximation.
These studies establish a cost function for the total execution
time and try to minimize the output of the cost function.
The results derived are similar to those obtained in Section
4.2. Other work considers those and additional approximations
under a variety of failure distributions [3].

Authors of [29], [36] have taken a different approach by
modeling the problem as a Markov availability model and
obtained an optimal checkpoint placement that maximizes
system availability. [29] has addressed the issue of placing pro-
cesses on available processors (task mapping) and determining
corresponding checkpoint intervals to obtain the best execution
time. They model the performance of coordinated checkpoint-
ing systems where the number of processors dedicated to
the application (termed “a” for active) and the checkpoint
interval (termed “I”) are selected by the user before running
the program. The model is used to determine the average
availability of the program in the presence of failures thatcan

be used to select values of a and I to minimize the expected
running time of the program.

In [25], authors have presented a reliability-aware method
for an optimal C/R strategy towards minimizing rollback
and checkpoint overheads. Their model considers variable
checkpoint intervals by taking actual system reliability into
account.

The works cited above have considered C/R as the only
method for achieving fault tolerance and analyzed the effect
of C/R on application execution time. As discussed before, re-
dundancy is another way of achieving fault tolerance. Ferreira
et al. [13] have studied the viability of process replication as
the primary fault tolerance mechanism for exascale systems,
employing C/R as a secondary mechanism. Results from their
work show that replication outperforms traditional C/R ap-
proaches for large sockets counts and limited I/O bandwidths
frequently anticipated at exascale. The study compares only
two models of execution, one without redundancy and another
with dual (2x) redundancy assuming that processes have to
double up on the same number of nodes. In contrast, our work
assumes that the number of nodes is increased at the same
rate that the number of processes increases under redundancy.
This is more realistic since high-performance applications
tend to fully utilize the available memory space of a node.
Furthermore, we model the execution of an application in the
presence of redundancy at various degrees (including partial
redundancy) in combination with C/R. Using this model,
we study the trade-off between levels of redundancy and
checkpoint frequencies with the goal of optimizing system
performance.

8. Conclusion
Petascale and forthcoming exascale computing systems ex-

perience outages due to failed components, software bugs, and
power disruptions. A common method to allow application
runs longer than interval between faults is to checkpoint
applications to stable storage. But studies show that large-
scale applications spend more than 50% of their time in
C/R activities. Another way to achieve fault tolerance is to
employ redundancy, wherein multiple processes perform the
same computation.

This work shows that C/R-based fault tolerance can be
used in synergy with redundancy to optimize application
performance. We have developed an analytic model to estimate
the execution time of long-running large-scale programs in
presence of failures that combines C/R with redundancy. Using
this model, HPC users can configure their application to select
the right redundancy degree and checkpoint frequency to ob-
tain the maximum performance for the available resources. We
also validated the model by injecting faults into applications
with an implemented redundancy layer on our computing
cluster. The modeled application behavior closely mimics the
observed application behavior on our cluster and we obtain the
best performance at the same redundancy levels as given by
the model. We observed that there are some deviations from
the modeled performance curve. This was partially caused by



an underestimation of execution time for experiments so that
fewer failures were injected than under the model.

Overall, combined C/R and redundancy results in shorter
overall execution time even for HPC applications with≈
4, 000 processes for 2x redundancy for high failure rates (5
year MTBF/node). At≈ 80, 000 processes, dual redundancy
(2x) requires twice the number of processing resources for an
application but allows two jobs of 128 hours wallclock time
to finish within the time of just one job without redundancy.
Beyond≈ 770, 000 processes, 3x redundancy outperforms all
other redundancy levels. Partial redundancy of 2.5x also results
in the lowest time for certain process counts and MTBF values,
which usually span a short window. Overall, our work allows
a trade-off between additional resources and wallclock time,
which effectively presents a tuning knob for users to adapt to
resource availabilities.
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