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ABSTRACT

Concern is growing in the high-performance computing
(HPC) community on the reliability of future extreme-
scale systems. Current efforts have focused on appli-
cation fault-tolerance rather than the operating system
(OS), despite the fact that recent studies have suggested
that failures in OS memory may be more likely. The OS
is critical to a system’s correct and efficient operation of
the node and processes it governs — and the parallel na-
ture of HPC applications means any single node failure
generally forces all processes of this application to ter-
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minate due to tight communication in HPC. Therefore,
the OS itself must be capable of tolerating failures in a
robust system. In this work, we introduce mini-ckpts,
a framework which enables application survival despite
the occurrence of a fatal OS failure or crash. mini-
ckpts achieves this tolerance by ensuring that the crit-
ical data describing a process is preserved in persistent
memory prior to the failure. Following the failure, the
OS is rejuvenated via a warm reboot and the applica-
tion continues execution effectively making the failure
and restart transparent. The mini-ckpts rejuvenation
and recovery process is measured to take between three
to six seconds and has a failure-free overhead of between
3-5% for a number of key HPC workloads. In contrast
to current fault-tolerance methods, this work ensures
that the operating and runtime systems can continue
in the presence of faults. This is a much finer-grained
and dynamic method of fault-tolerance than the current
coarse-grained application-centric methods. Handling
faults at this level has the potential to greatly reduce
overheads and enables mitigation of additional faults.

1. INTRODUCTION

The operating system (OS) kernel is responsible for
supervising running applications, providing services,
and governing hardware device access. While applica-
tions are isolated from each other and a failure in one
application does not necessarily affect others, a failure
in the kernel may result in a full system crash, stopping
all applications without warning due to system services
that run across the entire machine

In current high-performance computing (HPC) sys-
tems with 100s of thousands of processor cores and 100s
of TB of main memory, faults are becoming increasingly
common and are predicted to become even more com-
mon in future systems. Faults can affect memory, pro-
cessors, power supplies, and other hardware. Research
indicates that servers tend to crash twice per year (2-
4% failure rate) and unrecoverable DRAM errors occur
in 2% of all DIMMs per year [37]. A number of stud-
ies indicate that ECC mechanisms alone are unlikely to
be sufficient in correcting a significant number of these
memory errors [26, 38]. While not all faults result in



failure, when they do, intermediate results from entire
HPC application executions may be lost 1.

The objective of this work is to isolate applications
from faults that originate within the processor or main
system memory and result in OS kernel failures and
crashes. This work is critical to the scalability of cur-
rent and future large-scale systems due to the fact that
while the kernel occupies a relatively small portion of
memory (10-100 MB) relative to an HPC application
(up to 32 GB per node), errors in kernel memory may
be more likely [26], and the kernel is critical to all other
processes running on a node — and in HPC even other
nodes whose progress depends on being able to commu-
nicate with the faulted node. In this work, we target
the Linux OS due to its widespread adoption on current
HPC platforms (97% of the Top500 [5]), although the
methodology described in this work applies directly to
most other OSs.

While failures due to hardware faults are a concern in
large clusters, software bugs pose an equally fatal out-
come in the kernel, regardless of scale. Bugs may result
in kernel crashes (a kernel “panic”), CPU hangs, and
memory leaks resulting in eventual kernel crashes, or
other outcomes leaving system performance degraded or
only partially functional. Therefore, we have designed
mini-ckpts to recover the system in the face of both
kernel bugs and transient hardware faults.

The primary objective of mini-ckpts is to demon-
strate the feasibility of voluntary or failure-induced sys-
tem reboots by serializing and isolating the most es-
sential parts of the application to persistent memory.
To this end, we make minimal modifications to the OS
for saving the CPU state during transitions between
user space and kernel space while migrating application
virtual memory to an execute-in-place (XIP) directly
mapped physical memory region. Finally, failures are
mitigated by warm booting an identical copy of the ker-
nel and resuming the protected applications via restor-
ing the saved state of user processes inside the newly
booted kernel.

While other research, such as Otherworld [14], has
proposed the idea of a secondary crash kernel (activated
upon failure) that parses the data structures of the orig-
inal, failed kernel, this work is novel as it is the first to
demonstrate complete recovery independence from the
data structures of an earlier kernel. The premise is that
a kernel failure may corrupt the kernel’s content. The
failure itself might be due to a corruption or bug in
the first place, which could impede access to the old
kernel’s data. mini-ckpts’ unique contribution is that
it has no dependencies on the failed kernel, and that
all state required to transparently resume a protected

1While a failure is one possible consequence of a fault,
we do not strictly distinguish these terms in the follow-
ing since the common term“kernel fault” actually refers
to a kernel failure resulting from a fault, i.e., the termi-
nology is used inconsistently in practice but the context
allows one to infer the meaning.

process can be proactively managed prior to a failure.
This allows HPC applications to avoid costly rollbacks
(during kernel panics) to previous checkpoints, espe-
cially when considering that rolling back on a massively-
parallel HPC system typically requires all communicat-
ing nodes to coordinate and rollback together unless
coupled with other more costly techniques such as mes-
sage logging [30].

This work makes the following contributions:

• It identifies the minimal data structures required to
save a process’ state during a kernel failure.

• It further identifies instrumentation locations generi-
cally needed in OSs for processor state saving.

• It introduces mini-ckpts, a framework that imple-
ments process protection against kernel failures by
saving application state in persistent memory.

• It evaluates the overhead and time savings of mini-
ckpts’ warm reboots and application protection.

• It experimentally evaluates application survival of
mini-ckpts protected programs in the face of in-
jected kernel faults and bugs for a number of key
OpenMP and MPI parallelized workloads.

2. MINI-CKPTS OVERVIEW

mini-ckpts protects applications by taking a check-
point of the process and its resources, modifying its ad-
dress space for persistence, and then periodically saving
the state of the process’ registers whenever the kernel
is entered. With the checkpointed information and reg-
ister state, mini-ckpts later recovers a process after a
kernel crash occurs. Recovery is performed by attempt-
ing to recreate the process in the exact state prior to
the crash using well established techniques employed by
traditional checkpoint/restart software, such as Berke-
ley Lab Checkpoint/Restart (BLCR) [15]. The basic
checkpointing features mini-ckpts supports are shown
in Table 1. Additionally, mini-ckpts support for per-
sistent virtual memory is comprehensive. A summary
is available in Table 2.

To use mini-ckpts, one first needs to boot a kernel
with mini-ckpts modifications followed by additional
bootstrapping steps during start-up:

Table 1: Summary of process features mini-ckpts pro-
tects in checkpoint during failures

Multi Threaded Proc. Process ID
Mutex/Conditions Variables Process UID & GID
Regular Files (excl. seek) System Calls
Signal Handlers & Masks Unflushed File Buffers

Stdin/Out/Err mmap’d files
Block Dev. /dev/{null,zero} mprotect

FPU State CPU Registers
Process Credentials Process Parent/Child

Table 2: Persistent virtual memory support protected
during failures

BSS, Data, & Heap sections Executable (text)
Anonymous mmap’d Regions Shared Libraries

File-based mmap Regions vdso, vsyscall



• The mini-ckpts kernel is booted and filesystems such
as /proc and /dev are mounted.

• The PRAMFS persistent memory filesystem is either
initialized as empty or mounted if it already exists
from a prior boot.

• A fresh copy of the mini-ckpts kernel is loaded into
a reserved section of memory for later use (upon a
system crash).

• If we are booting after a failure, the last checkpoint is
restarted automatically. The mini-ckpts protected
application resumes exactly where it left off.

Once an application is launched on a mini-ckpts
enabled kernel, failure protection begins after the first
checkpoint operation. A checkpoint operation is either
self-triggered programmatically via a call to a shared li-
brary (preloaded with LD_PRELOAD or triggered by send-
ing a specific signal to the process. The initial check-
point migrates the process’ virtual memory to the pro-
tected and persistent file system (PRAMFS), described
in the following section. It then stores its open files,
memory mappings, signal handlers, and other state de-
tailed in Tables 1 and 2. Once the first checkpoint oper-
ation is complete, the system will ensure that the CPU
registers and FPU (Floating Point Unit) state are al-
ways saved in persistent memory when the kernel is en-
tered. Any further kernel entries, whether system call or
interrupt handler, will further update the saved check-
point with the correct CPU and FPU state. Once a
checkpoint is committed to the persistent stable storage,
any fault in the kernel will automatically warm reboot
the system and trigger the application to resume exactly
at the previous kernel entry which failed. This process
can repeat indefinitely until the mini-ckpts protected
application completes its execution successfully.

3. PERSISTENT VIRTUAL MEMORY
ACROSS REBOOTS

An application’s virtual memory consists of file-
mapped memory regions, anonymous (“private” or lack-
ing a file backing) memory regions, and special (vsyscall
or VDSO) regions. Also, file-mapped memory regions
may be either private CoW (copy on write) or shared
between processes. Some memory regions are subject
to write modifications during program execution (e.g.,
“anonymous” regions: data, stack, heap space).

Internally, the kernel provides applications with
anonymous memory virtual pages by designating frames
from unused physical memory. The physical to virtual
layout and structure is stored within the kernel and is
volatile, i.e., can be lost or corrupted should the kernel
be rebooted. Another volatile memory type is tmpfs,
the 100% in-memory RAM file system. Although tmpfs
is entirely stored in physical memory, it is incapable
of surviving a kernel restart because the mapping that
describes both the layout and contents of files are not
stored in persistent memory.

3.1 PRAMFS: Protected and Persistent
RAM Filesystem

Our approach requires a 100% in-memory RAM
filesystem that can survive a kernel crash and reboot
to persist anonymous and/or private memory regions
across kernel failures without the need for perfect ker-
nel data structure state.

PRAMFS [4] is a persistent NVRAM filesystem for
Linux that is capable of storing both the filesystem’s
metadata as well as contents 100% in-memory while by-
passing the Linux Page Cache. A PRAMFS partition
can be utilized on volatile RAM as well as NVRAM, al-
though the lifetime of a PRAMFS partition would then
be restricted to the duration of power being applied
to the RAM (i.e., a PRAMFS filesystem in RAM can-
not survive once the power is turned off). PRAMFS
can be combined with file mapping in processes as well
as execute-in-place (XIP) support to allow for a pro-
cess’ file-backed mappings to not only read/write di-
rectly to physical memory but also execute directly from
PRAMFS [25]. Since memory mappings to PRAMFS
are one-to-one with physical memory, an application
whose executable, data, stack, and heap are mapped
to a file based in PRAMFS would, in fact, be entirely
executing, reading, and writing within the PRAMFS
storage without any volatility should the process be ter-
minated at any point. To put this another way, if all of
a process’ memory was mapped to PRAMFS files and
the process was terminated prematurely at any arbi-
trary point, then the image in PRAMFS would be very
similar to a process’ core dump.

3.1.1 Protecting PRAMFS from Spurious Writes
During Faults

Some faults may result in spurious writes to parts
of memory related to or referenced by the faulting
code. mini-ckpts assumes that the memory stored in
PRAMFS is guarded by user space protection mecha-
nisms, such as algorithm-based fault tolerance, software
fault tolerance, redundancy, or some other means out-
side the scope of OS resilience [23, 20]. Otherworld
investigated the use of write-protected page tables to
protect user space memory and reported a runtime over-
head between 4%-12% for this additional protection [14]
while protecting NVRAM may result in 2x to 4x run-
time overheads [22].

3.2 Preparing a Process for Mini-Ckpts

mini-ckpts’ goal is to ultimately preserve process
state in the event of a kernel crash, therefore, it is im-
perative that the contents of all memory mappings are
safely retained. However, there are several regions of
memory that will be lost during a kernel crash, mostly
due to their dependence on the volatile page-cache, such
as copy-on-write mappings, private (anonymous) map-
pings, data, and the stack.

To always ensure consistency of non-volatile backing



store of applications, mini-ckpts migrates all memory
mappings to PRAMFS so that the process’ memory
may survive a kernel crash. To achieve this, we added
functionality to the kernel to pause all running threads
of a process, iterate through each virtual memory map-
ping of the process, and either copy or move each
memory mapping to a new, distinct file in PRAMFS.
For each memory mapping we created a new file in
PRAMFS sized to match each distinct memory region.
Then, for each region we copy the contents of the ex-
isting memory to the file, unmap the old region, and
then remap the new PRAMFS file into the same loca-
tion with the same read, write, and/or execute flags, but
with a shared instead of a private mapping, which en-
sures that writes instantly update the PRAMFS region.
Note: Once the PRAMFS files are virtually mapped
into a process, there are no further dependencies within
the kernel to maintain the mappings. The hardware
accesses the page tables directly, and even a failing ker-
nel would not necessarily affect an application’s direct
access to its memory as there is no buffering/caching
between the application, kernel, and physical memory.

4. INITIAL CHECKPOINTING

Protection for applications in mini-ckpts begins
with the first initial checkpoint. This initial checkpoint
performs two major functions; first, it remaps all mem-
ory into shared memory that is backed in PRAMFS
and second, it stores a serialized version of the process’
state. A checkpoint can be triggered either locally (syn-
chronously) or through another process (via a signal).

The initial checkpoint modifies its memory mappings.
To ensure that the application is not running during this
time, mini-ckpts interrupts all threads of the target
process with a signal and invokes a system call within
the threads’ signal handlers. The system call traps all
threads in the kernel and puts them to sleep until the
checkpoint commit operation is complete. Once within
the kernel, mini-ckpts remaps all process memory to
PRAMFS as previously described. All memory regions,
except the VDSO and vsyscall, are individually mapped
to separate files in PRAMFS. Since memory regions
may be several GB in size, which exceeds PRAMFS’
limits, mini-ckpts maps large contiguous mappings
into separate files, each no larger than 512MB.

After remapping process memory, mini-ckpts
records process state information to a separate persis-
tent region of memory. This recording largely mirrors
the BLCR checkpoint library’s storing of information,
such as open file descriptors, threads, virtual memory
layout and protections, process IDs, signal handlers, etc.
(see [15] and Table 1). TCP sockets are not restarted
automatically, which we address later in the context of
how to restore MPI communication.

Before allowing the application to resume, mini-
ckpts marks each running thread as tracked within the
kernel. This will enable mini-ckpts to capture the reg-

isters of this thread every time it is interrupted by the
kernel. Thus, the kernel will always maintain a safe
copy of each thread’s registers prior to a possible kernel
crash. This allows the threads to restart immediately
without any loss in computation upon a kernel failure.

5. CAPTURE AND RESTORATION OF
REGISTERS

A mini-ckpts checkpoint is taken whenever a thread
relinquishes control over a processor: at a (1) system
call, (2) interrupt, (3) non-maskable interrupt triggered
by signals, scheduling, sleeping, synchronization (wait-
ing for mutual exclusion) and both blocking and non-
blocking system calls. Each type of transition makes
a guarantee as to the state of the processor and regis-
ters when control is returned to the interrupted process
even though some may change certain registers. When
the hardware encounters an error, or when there is a
software bug, such as a stuck processor, non-maskable
interrupts may be triggered to initiate the mini-ckpts
recovery. The only locations that require kernel-level
instrumentation in order to save the registers of an in-
terrupted process are the entry points to both, system
calls and interrupt handlers, within the kernel.

5.1 Implementing Mini-Ckpts at the In-
terrupt and System Call Level

mini-ckpts needs to save the general purpose reg-
isters while entering the kernel. An interrupt already
provides most of the functionality needed. mini-ckpts
simply calls a routine that copies the saved registers
to the mini-ckpt location in persistent memory. If
a kernel crash occurs during the later handling of an
interrupt, then the most recent register state is safely
stored. mini-ckpts also saves the state of the floating
point registers besides general purpose registers.

System calls are handled in a slightly different man-
ner than interrupts, because some general purpose regis-
ters containing arguments to system calls are not saved.
Since mini-ckpts depends on saving the state of all
registers, the entry point for system calls required mod-
ifications to allocate kernel stack space for the complete
set of registers as well as to both save and restore the
registers during the system call entry and exit points.

If a system call ultimately results in a kernel crash,
then mini-ckpts will later restore the process’ registers,
but it still needs to consider what to do about the ini-
tiated system call. We provide two solutions:

• Return to the instruction immediately after the
SYSCALL instruction. This simulates the interruption
of a system call by setting the register containing the
system call return value to EINTR, which is a stan-
dard Linux return value indicating that the kernel
was interrupted and that the user process should try
to repeat the system call.

• Try to repeat the system call using the exact same
arguments immediately after restoring the thread.



We recommend the former approach because: (1) best
programming practices require developers to check and
handle the return values from system calls, (2) libraries
may already repeat the call for the programmer if they
detect EINTR, and (3) if the system call is repeated auto-
matically by mini-ckpts, then it risks potentially con-
taining a handle to an object that no longer exists (such
as a socket) after a restore.

5.2 Restoring Registers during Restart

For each thread of a process that is restored after a
restart, its general purpose registers must be returned
to their state immediately prior to the failure. A helper
routine is used to recreate each thread using standard
clone system calls, and then each newly created thread
requests its registers to be restored through a system
call via an ioctl to mini-ckpts. To ensure that regis-
ters are not clobbered upon returning from a syscall,
a trampoline was added that uses a combination of the
user space stack and injected code to simulate a trans-
parent restart. This builds on common platforms capa-
bilities: (1) the ability for a system call to return to a
specific address, and (2) the potential for the kernel to
modify the virtual memory of a process.

Our technique resembles setjmp/longjmp and de-
pends on using the stack to feed registers to an injected
trampoline code:

• A small region of executable helper code is injected
into the process being restored.

• A new thread is created for each one lost during the
failure.

• Thread registers are restored via a system call.
• The user space stack pointer is retrieved from the

registers stored during the system call entry.
• The stack pointer is advanced as the values of all

previously saved registers are written directly to the
user space stack.

• The kernel’s saved return instruction pointer is set to
a region of injected code. The system call will now
return to a new location.

• The injected code restores each register by popping
it from the stack, including the saved flags. The final
retq instruction returns execution back to the point
immediately prior to the previous kernel failure.

Once the trampoline finishes restoring the thread’s
registers, the process is unable to discern that it was in-
terrupted at all except for time measurements spanning
between the last mini-ckpt during failure, restart, and
time up until the retq completes in the trampoline.

6. HANDLING KERNEL FAULTS

A failure in the kernel (panic) should result in a soft-
ware fault handler known as a kernel panic. Within the
Linux kernel, the default action of the panic handler is
to attempt a backtrace of the current stack, print the
current registers, print an error message, if provided,
and then halt the system. A kernel panic may be trig-

gered by memory hardware faults, software bugs, or as-
sertion failures within kernel code. Depending on the
severity of the failure, it might not be possible for the
kernel to perform its final debug print messages prior
to halting. Additionally, in multicore (SMP) systems,
the panic handler is tasked with attempting to halt all
other processors.

6.1 Warm Rebooting

The Linux kernel provides kdump, a mechanism
wherein the panic handler attempts to perform a warm
reboot into a secondary crash kernel and simultaneously
preserve a copy of its own memory for later observation
and debugging from the crash kernel. Because the in-
tent of a crash kernel is merely to provide the most basic
services in order to inspect or save the memory of the
previous kernel, the system is warm booted in an un-
usual configuration: SMP is unavailable, and the core
on which the new kernel is running is typically the same
core that previously experienced a kernel panic. For the
purposes of HPC applications, any warm reboot would
require a stable system with all SMP cores available.
Once in this state, recovering would normally require a
full reboot through the BIOS.

To provide a fully functional SMP system after a
kernel panic, mini-ckpts implements a migrate-and-
shutdown protocol that is used during a failure. First,
since a failure may occur on any core, mini-ckpts in-
stalls a specialized NMI (Non-Maskable Interrupt) han-
dler once a panic is detected. Next, since other cores
running in parallel may not yet be aware of the fail-
ure, the failing core sends an NMI to all other cores.
This NMI forces all cores to immediately jump to the
NMI handler. As part of the NMI handler, any and
all mini-ckpts protected processes save their registers.
Once in the NMI handler, core 0 takes the lead (if it
was not already the first core to panic) since it must be
the first CPU to perform a warm reboot. Once core
0 has detected all other cores to have signaled that
they are halted, core 0 begins unpacking and relocat-
ing a fresh copy of the kernel, sets up basic page tables,
passes memory mapping information for the PRAMFS
and persistent regions, and jumps to the entry point of
the new kernel. It has essentially performed an emer-
gency shutdown of all cores and then completed the
same steps a traditional bootloader would do to start
an operating system.

6.2 Requirements for a Warm Reboot

Minimizing the data structures required to perform
a warm reboot is critical to mini-ckpts’ success. The
code paths needed for a successful warm reboot begin
at a call to panic. The paths to reaching panic are
very broad but may include dereferencing invalid point-
ers or assertion failures within the kernel. Once panic
is reached, mini-ckpts ensures that no further mem-
ory allocation will be required. Its dependencies then
involve functions that typically execute between 1-5 in-



structions, such as shutting down the local APIC, high
performance timers, and then signaling NMI interrupts
for all cores. For NMI interrupts to work, we must also
assume that the code paths and interrupt vectors them-
selves remain valid.

Within the NMI handler, we must assume that the
per-CPU interrupt stacks remain available. This also
assumes that hardware registers were not corrupted
as part of the failure. Once in the NMI handler, if
the panic has interrupted a mini-ckpts protected task,
mini-ckpts must be able to access a 64-bit pointer in
the thread’s thread_info struct. It is fine if any other
thread or task related members have been corrupted.
The single pointer both indicates (if non-zero) that the
thread is protected and, in doing so, points directly to
where the interrupted threads’ registers should be saved
in persistent memory. Locating the thread_info struct
is fortunately trivial if the thread’s registers are valid
since it is calculated based on the kernel’s stack pointer.

Finally, mini-ckpts assumes that the persistent re-
gion of memory where mini-ckpts stores a serialized
copy of the protected process remains safe. The check-
point itself is typically under 100KB, which is small rel-
ative to today’s main memory size. Additionally, soft-
ware correction codes could be applied to the persistent
memory if desired.

7. SUPPORTING MPI APPLICATIONS

Traditional checkpoint/restart tools do not support
automatic reconnection of network sockets for applica-
tions during restart. Instead, they tend to provide a
callback procedure for applications that moves the bur-
den (and programming logic required) to the developer,
if they wish to support the checkpoint restart paradigm.
But kernels typically buffer both file I/O and network
traffic so that an application may falsely believe that it
has successfully sent data that is still buffered and then
lost on a kernel crash. As a result, MPI implementa-
tions that do support checkpoint/restart may require
network traffic to quiesce and all buffers drained before
a checkpoint is taken. Moreover, MPI implementations
consider the loss of communication with a peer pro-
cess as a critical error forcing an entire job to terminate
without saving its computation.
mini-ckpts supports HPC workloads via run-

through / forward progress fault tolerance for MPI ap-
plications through librlmpi. librlmpi specifically han-
dles transient network failures, network buffer loss, and
incomplete message transmission, which all may occur
during a local or remote (peer) kernel failure. librlmpi
is reliable, in that it supports handling lost messages
either on the network wire or kernel buffer, and in that
it can tolerate a network failure during any point of its
execution or any of its system calls.

7.1 librlmpi Internals

Internally, during normal execution, librlmpi depends

on poll, writev, and readv. It uses a threaded
progress engine that monitors the return values of sys-
tem calls. It can detect when mini-ckpts has trans-
parently warm rebooted the system by watching for an
EINTR system call error as discussed earlier. Upon de-
tection of a warm reboot, librlmpi resets any message
buffers in transit (pessimistically assuming they failed),
and reestablishes connections with its peers. Likewise,
a peer that has not undergone a failure is able to accept
a new connection from a lost peer and resume commu-
nication where it left off. Any message transmissions
that were cut off during a failure are restarted. Any
data that had been buffered in kernel send or receive
buffers will be resent, as librlmpi employs positive ac-
knowledgments between peers.

librlmpi uses internal message IDs to uniquely iden-
tify and acknowledge transmissions between peers. Af-
ter a failure, the peer node that failed (and subse-
quently warm rebooted) reestablishes connections with
its peers. Both peers then send recovery details on the
last messages they received even if they were not ac-
knowledged earlier, i.e., a message is only resent if it was
(1) not yet sent, or (2) lost in the kernel buffer or net-
work. During normal execution and recovery, any mes-
sage IDs that preceded the most recent acknowledgment
are marked as complete (i.e., MPI_Wait or MPI_Test
finish) and the space occupied by the message may be
reused, per the normal MPI interface.

librlmpi employs the equivalent of a ready-send trans-
mission protocol. Although ready-send semantics are
not enforced at the application level, librlmpi will not
transmit an outgoing message until its peer has sent a
receive envelope indicating it is ready and has a buffer
available to receive the message. If an MPI application
attempts to send a message prior to a receive being
posted, the transmission will be delayed until the re-
ceive is posted. From an application’s point of view, we
follow the MPI standard and support properly written
MPI applications without any modifications.

Overall, librlmpi combined with mini-ckpts trans-
parently allows an MPI application to be interrupted
by a kernel panic and resume execution without loss of
progress. It does not require any modification to an
MPI application. If an MPI application wishes to begin
its mini-ckpts protection automatically (instead of us-
ing an external signal), an API is provided, which allows
the application to initiate protection.

7.2 MPI and Language Support

librlmpi supports basic MPI point-to-point communi-
cation, many collectives, and provides specialized rou-
tines to allow an MPI application to enable mini-ckpts
protection and inject kernel faults for testing kernel
panic recovery.

8. EXPERIMENTAL SETUP

mini-ckpts is evaluated in both physical and virtu-



Benchmark CG EP IS LU BT FT MG SP UA
OpenMP Input B B C A A B B A A

Bench./App. CG EP IS LU PENNANT Clover Leaf
MPI Input C C C B sedov (400 iter.) clover bm2 short.in

Table 3: Used benchmark classes (input/problem sizes) for NPB for 8 Threads / 4 MPI Tasks
(measured

in seconds)
BIOS

boot time
Kernel

boot total
Netw driver+

NFS-root mount
Kernel
misc

Software
stack total

Cold total
w/ BIOS

Warm
boot tot.

AMD Bare Metal 37.4 5.3 1.5 4.8 0.7 50.3 6.0
Intel Bare Metal 50.8 6.7 3.0 3.7 0.7 73.0 7.4

AMD VM — 0.8 < 0.2 < 0.6 3.0 — 3.8
Intel VM — 0.7 < 0.2 < 0.5 1.3 — 1.9

Table 4: Observed Times for Both Cold
and Warm Booting a mini-ckpts-enabled System

alized environments to demonstrate mini-ckpts effec-
tiveness and application performance overheads. Fault
injections are provided as callable triggers that delib-
erately corrupt kernel data structures or directly in-
voke a kernel panic. mini-ckpts is evaluated on both
OpenMP parallelized applications and MPI-based ap-
plications using a prototype MPI implementation with
librlmpi to handle network connection loss at any point
during execution.

Our test environments used for evaluation include:
(1) 4 nodes with AMD Opteron 6128 CPUs, (2) 1 node
with an Intel Xeon E5-2650 CPU, and (3) KVM vir-
tualized environments running on the same AMD and
Intel hosts. (1) and (2) are referred to as bare metal in
the results section. The bare metal environments are all
booted in a diskless NFS root environment. The virtual
machine environments use a “share9p” root filesystem
with their hosts, which, for practical purposes, is simi-
lar to a diskless NFS root for the virtual machine. In all
configurations we provide 128MB of memory for storing
persistent checkpoint information (although typically
<100KB is used) and an additional 4GB of memory
for the PRAMFS partition, which is where the memory
of protected processes will reside during execution. All
systems have been configured conservatively to optimize
boot time: the system’s boot order prioritizes booting
directly to our custom kernel, which bypasses network
controller initialization and any potential scanning for
other boot options.

The experimental operating system modified for
mini-ckpts is based on Linux 3.12.33, and our modified
user space checkpoint library is a branch of BLCR [15]
version 0.8.6 b4. Our bare metal and virtual machine
experiments both use the same root environment based
on Fedora 22. The kernel is configured for loadable
module support, but all drivers, etc. are compiled di-
rectly into the kernel to tune it for a cluster environ-
ment. The only modules that are loaded at runtime are
our modified BLCR checkpointing module and modules
that are used to inject faults during our evaluation. As
a result, when evaluating boot times and methods, we
omitted the use of an initial ramdisk. Our hypervisor
is qemu-kvm 1.6.2.

The NAS Parallel Benchmarks (NPB) OpenMP and
MPI Versions [8] are used to evaluate the effectiveness of

mini-ckpts in multithreaded/MPI environments. NPB
includes computational kernels whose performance is in-
dicative of other large-scale workloads and is a common
benchmarks suite used in HPC. NPB DC (Data Cube) is
excluded as it depends on heavy disk I/O. The bench-
mark classes (input/problem sizes) used are listed in
Table 3.

For MPI, we evaluate the performance of the CG
(Conjugate Gradient), IS (Integer Sort), LU (Lower-
Upper Gauss-Seidel solver), and EP (Embarrassingly
Parallel) benchmarks, as others depend on MPI func-
tionality not implemented within our librlmpi proto-
type, such as MPI_Comm_split. We further evaluate for
MPI the PENNANT mini-app version 0.7, an unstruc-
tured physics mesh mini-application from Los Alamos
National Laboratory [3], and the clover leaf mini-app
version 1.0 from Sandia National Laboratories, an Euler
equation solver [1]. The OSU Micro Benchmarks ver-
sion 4.4.1 is used to evaluate librlmpi’s point-to-point
latency, bandwidth, and collective operations [2]. Open-
MPI version 1.8.5 is included in the experiments to com-
pare the performance of a mainstream MPI implemen-
tation against our prototype implementation, librlmpi,
and to establish any relative difference. All MPI bench-
marks are run across four AMD Opteron 6128 nodes
using Gigabit Ethernet for communication.

9. RESULTS

We first measure the time required for a full vs. warm
reboot on both a bare metal and virtualized systems
(Table 4). The cost of booting measured from the BIOS
to the stage that the bootloader is reached is approxi-
mately 37 and 50 seconds on our bare metal test sys-
tems. As explained in the previous experimental setup
section, the systems’ boot order was optimized by di-
rectly booting to our kernel. Once the bootloader is
reached and the kernel begins executing, the boot pro-
cess requires between 5-7 seconds before the kernel is
fully initialized. Of this, device initialization accounts
for the majority of time. The network card drivers re-
quire between 1-3 seconds to initialize (even though
IP addressing is statically configured vs. DHCP and
the addressing is configured by the kernel instead of
user space utilities). The remaining time is spread out
among the initializations of various kernel subsystems



and other devices that are configured relatively quickly.
In virtualized environments on the same systems as the
AMD and Intel bare metal measurements, we observe
that the same kernel boots in less than one second. The
primary difference is the lack of slowly initializing hard-
ware devices: The Ethernet driver required less than 0.1
seconds to complete, and the disk driver (share9p) com-
pleted initialization and mounting in under 0.2 seconds.
mini-ckpts never requires a full reboot in either a vir-
tualized or bare metal environment regardless whether
or not it is activated to simply rejuvenate a kernel or
in response to a failure. The important metric to con-
sider is the difference in boot times excluding the BIOS,
which is between 5-7 seconds vs. approximately 2-4 sec-
onds for a virtual machine (VM). This number repre-
sents the approximate downtime incurred by a kernel
panic when combined with the cost of booting our soft-
ware stack. We observe that the total cost of warm
rebooting either bare metal environment is between 6-
7.4 seconds.

After the kernel boots, our software stack usually re-
quires about one second to start up services and mod-
ules before resuming a rescued application.

9.1 Basic Applications

To ensure mini-ckpts basic correctness, we devel-
oped test applications that iterated through hardware
registers while setting them to known deterministic pat-
terns in single and multithreaded environments. Dur-
ing execution, we periodically injected a kernel panic.
Through over 100 repeated kernel panics, mini-ckpts
was able to continuously warm reboot the system and
continue executing the application without affecting its
state.

We next developed a similar test that performed float-
ing point (FPU) calculations on multiple cores designed
to only print a failure if the FPU operations (multi-
ply, divide, add, subtract) diverged from their expected
value by more than 10-5, to account for FPU round-
ing errors. Again, mini-ckpts was able to protect this
FPU test against failures for over 100 consecutive panics
during the execution of the same application.
mini-ckpts was then evaluated against the sh shell,

vi text editor, and python interpreter. While mini-
ckpts has not been extended to support updating file
descriptor seek pointers, it was able to continue execut-
ing these applications correctly provided they did not
perform extensive file I/O. The vi editor did require a
command to be blindly typed to reset its terminal dis-
play after each panic, since the terminal would not be
aware that it needs to refresh after a transparent warm
reboot.

9.2 OpenMP Application Performance

We next evaluated mini-ckpts with HPC bench-
marks from the NAS Parallel Benchmarks (NPB) suite
and OpenMP version 3.3 [8]. The results for all envi-
ronments (8x runs each) are in Figure 1. Bars represent

the average runtime per benchmark, excluding intializa-
tion, and the error bars indicate the observed minimum
and maximum time.

We next discuss the potential for hardware archi-
tectures to create performance variability in terms of
mini-ckpts runtime cost.

9.2.1 NUMA Constraints Imposed by PRAMFS

Naively remapping application memory to PRAMFS
may have implications for performance: In Linux,
anonymous memory mappings (i.e., heap and stack)
may be provided by any free memory. A specialized
memory allocator may request memory local to a spe-
cific CPU (closest memory controller). PRAMFS, how-
ever, is statically allocated to a specific region of phys-
ical memory. In non-uniform memory access (NUMA)
architectures, this implies that PRAMFS mapped mem-
ory regions will have differing latencies between mem-
ory accesses on varying cores. We observed that the
minimum and maximum runtimes vary by 62% for the
CG benchmark when no core pinning was applied to
OpenMP threads (Figures omitted due to space con-
straints). As the scheduler moved threads between
cores, the overall runtime of the application varied
based on NUMA locality. While CG had the most pro-
nounced effect, the other benchmarks displayed some
degree of variance as well.

We were able to confirm that NUMA was responsible
for the runtime variance through two experiments:

(1) We created a microbenchmark that used mmap to
map 64MB of memory to our application. In a linear
fashion, we then wrote 6GB worth of cumulative writes
over this region. Using core pinning, we timed this ex-
periment running on each core. This experiment was
repeated for both the AMD and Intel bare metal sys-
tems as well as within virtual machines on both. The
results of each experiment are shown in Table 5.

Cores 0-3 4-7 8-11 12-16
AMD 1.42 2.04 3.25 3.30

AMD VM 3.2 - 3.4
Intel 0.90 1.12

Intel VM 0.95
All Times in Seconds

Table 5: NUMA Microbenchmark Interacting with
PRAMFS Memory Mappings

We see locality for PRAMFS, and we also observed
that by changing the physical location of the PRAMFS
the NUMA localities also move, as expected. Addition-
ally, we compared the runtime of writing to a PRAMFS
mapping vs. an mmap anonymous memory mappings
and found the runtimes had a difference of 2.7% on aver-
age (in either direction) for the AMD machine and a 1%
difference (in favor of PRAMFS) on the Intel machine.
On the virtual machines, we found that regardless of
core pinning within the VM, the hypervisor treats each
virtual CPU as a thread, which is subject to migration
by the hypervisor’s scheduler. As shown in Table 5, the
AMD VM scheduler experienced performance near the



 0

 10

 20

 30

 40

 50

 60

 70

 80

BT CG EP FT IS LU MG SP UA

R
u
n
ti

m
e
 i
n
 S

e
c
o
n
d
s

Baseline
Mini-ckpts Enabled

(a) Bare Metal AMD Opteron 6128
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(b) Bare Metal Intel E5-2650
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(c) KVM Hypervisor on AMD Opteron 6128 Host
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(d) KVM Hypervisor on Intel E5-2650 Host

Figure 1: Runtime Performance of the NPB OpenMP Benchmarks Running with 8 Threads - Core Pinning Applied

its bare metal host’s worst NUMA mappings. The Intel
VM showed a performance between both its host’s best
and worst performance as the scheduler migrated the
virtual cores during execution.

(2) To isolate the effects of PRAMFS from mini-
ckpts, we repeated the benchmarks by modifying mini-
ckpts to only perform PRAMFS remappings, but to
not make any further modifications or checkpoints on
the process. When combined with core pinning and
knowledge of the NUMA latency of each core, we were
able to repeat both the best and worst case runtimes
for each experiment. Repeated experiments with best-
case NUMA mappings and core pinning are shown in
Figure 1.

In comparing the two OpenMP experiments with
(Figure 1) and without core pinning, we observed that
mini-ckpts in combination with intelligent physical
memory mapping of PRAMFS reduced the AMD host
runtimes on average from 26% to 6.9%. The Intel host
runtimes were reduced on average from 25% to 5.9%.

9.3 MPI Application Performance

mini-ckpts requires customized MPI implementa-
tion support to handle lost network connections and
buffers on both the sender and receiver. An imple-
mentation must also be prepared to handle unexpected
failures during system calls by anticipating an EINTR
return value from system calls that mini-ckpts recov-
ered from after a warm reboot. Our prototype imple-

mentation, librlmpi, supports these requirements. To
provide a meaningful evaluation of the performance of
mini-ckpts with MPI, we also show performance com-
parisons between vanilla librlmpi (without mini-ckpts
enabled) and a mainstream MPI implementation, Open
MPI. Additionally, mini-ckpts requires remapping all
process memory to PRAMFS, so we include an exper-
iment that triggers PRAMFS remapping, but does not
activate mini-ckpts protection. This experiment pro-
vides insight into the effects of PRAMFS memory ef-
fects (NUMA) without incurring any mini-ckpts over-
head. Open MPI currently cannot handle recovery after
a mini-ckpt, but the relative performance comparison
provides the reader with a grasp of librlmpi’s perfor-
mance against a known implementation.

Benchmarks are reported from 8x runs each with bars
for minimum/maximum values. We omit detailed re-
sults from micro benchmarks in favor of a brief sum-
mary due to space.

Figure 2 shows the runtimes of four NPB MPI bench-
marks, PENNANT, Clover Leaf over 4 AMD nodes
using Gigabit Ethernet. Compared to Open MPI, li-
brlmpi on its own performs better than Open MPI for
IS (6% faster). Performance is similar for CG (-1%), EP
(0.7%), LU (2%), PENNANT (3%) and is 8% slower for
Clover Leaf. The results as both, percent differences
and difference in geometric mean (librlmpi in various
configurations vs. Open MPI), are shown in Table 6.
These results show that librlmpi provides comparable
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Figure 2: Runtime Comparisons of Various MPI Bench-
marks in Differing MPI Stack Configurations

point-to-point message performance to Open MPI at
least at our MPI job size when message latency is not
a bottleneck to application performance.

Relative to Open MPI, overall average difference of
just librlmpi for all benchmarks is 1.1% with a difference
in geometric mean of 1.0%. As we enable PRAMFS
with librlmpi, the average difference becomes 2.2% with
a difference of geometric mean of 2.1%. Finally, with
full librlmpi, PRAMFS, and mini-ckpts enabled, the
average difference becomes 3.1% with a difference of
geometric mean of 2.9%.

Table 6 additionally compares librlmpi against itself.
Since librlmpi is a prototype demonstrating the capa-
bility of mini-ckpts to work with an MPI implemen-
tation, the overheads of PRAMFS and mini-ckpts rel-
ative to baseline librlmpi (instead of Open MPI) are
now discussed. By subtracting column B from column
A, it is observed that on average running an applica-
tion with data migrated to PRAMFS accounts for 1.1%
of the overhead. Further, only considering the costs of
mini-ckpts by subtracting column C from column B,
it is observed that on average mini-ckpts accounts for
0.9% of the overhead.

9.3.1 Injections During MPI Execution

The performance of the librlmpi prototype is used as
a tool to demonstrate mini-ckpts functionality rather
than its MPI performance. mini-ckpts provides pro-
tection at a per-node level. We investigated if failures
incur a constant cost, independent of the number of
processes in a job, as well as, independent of the type
of job running. We designed injection experiments for
MPI applications to evaluate how mini-ckpts scales
with MPI. The first experiment involves picking a sin-
gle node to repeatedly inject kernel failures into. We
vary the number of injections seen per run of the appli-

A B C

Benchmark diff. diff. diff. B-A C-B
L L+P L+P+M P M

NPB CG -1.0% -0.2% 1.0% 0.8% 1.2%
NPB LU 2.0% 5.5% 6.5% 3.5% 1.1%
NPB EP 0.7% 0.7% 0.8% 0.0% 0.1%
NPB IS -6.0% -5.1% -6.1% 0.9% -1.0%

PENNANT 3.1% 1.3% 2.8% -1.8% 1.5%
Clover Leaf 7.9% 11.2% 13.4% 3.2% 2.2%
Averages 1.1% 2.2% 3.1% 1.1% 0.9%

Diff.Geo.Mean 1.0% 2.1% 2.9% 1.0% 0.8%
Table 6: Differences in Runtime & Geometric Mean of
MPI Benchmarks with librlmpi(L), PRAMFS(P), and
mini-ckpts (M) Relative to Open MPI

cation from zero (failure free case) to four. Our second
experiment alternates between all nodes each time pick-
ing a new node to fail. For instance, in our four process
jobs, we first fail node 1, followed by 2, then 3, and
finally node 4.

Figure 3 summarizes our injections during MPI ap-
plication execution. As each benchmark’s failure-free
runtime differs, we start the y-axis at 0 and measure
only the additional time required when one or more ker-
nel failures are injected. Each MPI application run was
conducted with zero and four failures, and each failure
was repeated in (1) a scenario where one node receives
all of the failures, or (2) the failures were distributed
(“alternating”) between all nodes. A separate experi-
ment was run for every possible failure count and tar-
get. Each experiment was repeated 8 times resulting in
error bars that show the observed minimum and max-
imum runtime, while the points represent the average.
We observe a linear runtime increase as the number of
injections is incremented for each benchmark.
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Figure 3: Runtime Costs per Kernel Panic Injection for
MPI Applications Demonstrating Linear Slowdown

On average, the additional time increase per injec-
tion was between 10-13 seconds, as shown in Table 7.
These experiments were run on AMD nodes where the
expected total warm reboot time (as shown in Table 4)
is previously observed to be 6 seconds, excluding the
time to restart an application. We expect that warm
reboots will incur an additional slight overhead be-



sides the time taken for the reboot itself since the CPU
caches will have been flushed when the operating sys-
tem restarts. This is similar to a benchmark performing
a“warm-up”prior to starting the primary computation.
A mini-ckpts restart is equivalent to jumping straight
into main execution without warming up the cache. The
restart times from the MPI injections show that failures
increase the application runtime in a linear manner.

# Kernel Panics 1 2 3 4

Time Increase 12.53 11.89 10.76 10.14
All Times in Seconds

Table 7: Average Additional Runtime With Varying
Number of Kernel Panics in MPI Applications

9.4 Fault Injections

Fault injections were performed by directly modify-
ing kernel memory from within a kernel module that
was triggered by ioctl system calls, which identifies
the type of injection. Ultimately, we measure mini-
ckpts’ effectiveness based on a successful recovery from
an injection that impacted the kernel in such a way that
is causing a crash or system hang. For example, some
types of kernel injections will either be benign or cause
the system to behave incorrectly (go unnoticed with-
out a panic or hang). These types of injections, if they
were to occur in the wild, would only be remedied by
mini-ckpts if the kernel implements a sanity check or
bug check that ultimately detects and reacts (by pan-
icking). This is an assumption on our work, but we will
point out that — even during the development of mini-
ckpts — there were several times that mini-ckpts mis-
behaved only to be caught by one of the kernel’s safe
guards, such as hang detection or file I/O errors. This
ultimately caused mini-ckpts to reboot the system to
a sane state immediately, making kernel development
easier than on bare metal without our improvements.

9.4.1 Invalid Pointers

We experimented with pointer injections, either set-
ting a pointer to NULL or switching it to a random
value. NULL pointers are the easiest to catch and were
protected 100% of the time, since NULL pointer derefer-
encing is an easily caught exception. Changing a pointer
with a non-NULL value had differing outcomes: If the
pointer was not a valid address, then it was caught as
an exception (leading to a panic), just as easily as a
NULL pointer. However, changing the low order bits on
a valid kernel pointer typically resulted in a call chain
that would randomly jump through the kernel until an
invalid reference or sanity check was reached.

During each of the NAS benchmarks we performed
the following experiments: (1) We forced a direct call
to panic. (2) We injected a NULL or invalid pointer to
task_struct fs member, signal handlers, parent mem-
ber, and/or files member. We were able to detect and
recover from each injection. We also scheduled forced
panics via a NULL pointer on each core of the system.
This test showed that mini-ckpts is able to recover

from a panic and reboot the system in a valid man-
ner regardless of which OS core it originated on. This
was a critical test as it demonstrated the effectiveness
of mini-ckpts NMI migration protocol during a fault.

9.4.2 Memory Allocation

Memory allocation within the Linux kernel is essen-
tial for it to operate properly. An allocation failure
when required will force the kernel to panic. mini-
ckpts does not allocate memory during a panic. How-
ever, it is able to induce a kernel panic by exhausting the
available memory and waiting for an allocation request
to arrive that cannot be fulfilled. We performed allo-
cation experiments repeatedly via kmalloc exhausting
available memory. Resulting crashes were able to be
caught and mitigated through a warm reboot. While
this was deliberate, mini-ckpts shows promise for miti-
gating kernel drivers that contain memory leaks on long-
running systems. With mini-ckpts, a leak could tem-
porarily be coped with by allowing a warm reboot to
take place whenever it has exceeded available memory.

9.4.3 Hard Hangs

Some types of faults result in hanging the system,
such as an infinite loop in a kernel driver. While Linux
is preemptible, a kernel thread may disable preemption
to avoid being interrupted during some work. If a fault
or bug occurs during this time, it is possible that the
CPU will become indefinitely hung. While mini-ckpts
cannot directly protection against this type of failure,
an NMI watchdog may help:

An NMI watchdog within modern hardware period-
ically sends a non-maskable interrupt to the OS as a
forward progress / liveness test. When it fails, the
watchdog can directly call a kernel panic (which mini-
ckpts uses to free the system from its hang and warm
reboots). As part of our testing, we injected hangs in
regular system calls and interrupt handlers. We were
able to successfully detect and recover from all failures.

9.4.4 Soft Hangs

Unlike hard hangs, a soft hang is a software loop that
is not making forward progress but is still on a code
path that clears the NMI watchdog timer. These types
of hangs are much more difficult to detect because the
operating system appears to be making progress despite
being indefinitely trapped in a loop. While we did not
explicitly test for these types of hangs, we did notice
that the read-copy-update (RCU) mechanism was able
to detect hangs within mini-ckpts’ file I/O routines
taking several minutes to complete during debugging
and development.

10. RELATED WORK

Traditional checkpoint/restart of tightly-coupled
HPC applications is a well known and researched field.
Typically, checkpointing involves saving the state of one



or more processes to stable storage (usually a disk), in-
cluding the memory, memory layout, open files, threads,
and handles to other services provided by the kernel.
Checkpointing usually comes in two flavors: (1) system-
level checkpointing, such as BLCR [15], which aims
to provide transparent checkpoint and restart support
to applications via kernel modules without requiring
user space application modifications, and (2) user-level
checkpointing, such as MTCP [35] and CRIU [17],
which also aim to provide transparent or assisted check-
pointing to processes without requiring kernel modifica-
tions or kernel modules. Although traditional check-
pointing methods may vary in how they are imple-
mented or the services they provide, all restore a pro-
cess to an earlier known good state. For long-running
applications that are infrequently checkpointed due to
the overhead associated with committing a checkpoint,
the loss of progress due to a restart from failure may
dramatically reduce the efficiency of an application.
To mitigate the overhead incurred by checkpointing,
a number of optimizations have been studied. These
optimizations include: incremental checkpointing [6,
41, 19, 18] which typically saves only modified por-
tions of a program, checkpoint compression [34, 28, 27],
and moving incremental checkpoint logic to within ker-
nel [21]. Even with such checkpointing optimizations,
when checkpointing, restarts, and rework are modeled
to match future exascale systems’ expected failure rates,
studies show that applications may spend more than
50% of their time in checkpoint/restart/rework phases
instead of making forward progress [16, 33, 36]. In these
application-based systems, failures that occur within
the operating system require an application to rollback
and rework as there simply is no other recourse. How-
ever, mini-ckpts can eliminate unnecessary restart/re-
work when the application itself remains recoverable,
despite a failed kernel.

The idea of an operating system resilient to software
errors is not new [7, 29, 12]. The MVS [7] operating
system was designed with fault tolerance in mind for
both software and hardware errors by requiring that all
services be accompanied by an error recovery routine
that executes in the event of a failure. This protection
increases both the complexity and size of the operat-
ing system. In the case of MVS, recovery routines were
provided for only 65% of the critical jobs. Despite the
efforts of the recovery routines that were provided, in
cases were recovery was activated due to a fault, MVS
was only successful in preventing an abort 50% of the
time [40]. Noting that many kernel failures occur due to
bugs within device drivers, the NOOKS [39] framework
wrapped calls between the core Linux kernel and device
drivers to isolate the effects of one from the other. For
cases where bugs are known to exist in drivers, NOOKS
provided a transparent solution, but incurs a latency
and bandwidth cost due to the wrapping of communi-
cation to and from drivers.

The Rio File Cache [13] provides the operating sys-

tem with a reliable write-back file cache in memory that
is capable of surviving warm reboots. Rio guarantees
that a file write operation buffered in the kernel dur-
ing a failure will not be lost, provided that the kernel
is able to perform a warm reboot, recover its unper-
turbed contents, and resume the write operation to sta-
ble storage on subsequent reboots. Rio is an example
of an independent part of the operating system making
guarantees about forward progress regardless of failures
by providing a near-zero cost virtual write-through re-
silience cache.

Protecting the operating system in other ways, such
as remote patching in Backdoors [11] or recovering
from disk and memory, has been studied, but they
have not focused on generalized, transparent high per-
formance application restart in an HPC environment
where automatic, low-latency recovery is essential for
efficiency [10]. Additionally, work that requires remote
intervention or local disk access may not be capable
of functioning in circumstances where drivers or kernel
support for either the network or disk are not guaran-
teed. mini-ckpts is specialized and superior in this
area in that it aims to ensure minimal internal kernel
dependencies during fault handling.

Otherworld [14] is perhaps the most similar work to
ours in that it attempts to recover applications in the
event that a kernel fails. Otherworld maintains a “crash
kernel” loaded in separate memory, and it receives con-
trol of the system upon failures. Their crash kernel
depends on known offsets of data structures within the
old kernel to attempt to parse and reconstruct old ker-
nel data structures. This includes a wide variety of
traversals and parsing of memory mappings, process
structures, file structures, and so forth. Thus, Other-
world depends heavily on an intact and correct kernel
state upon failure, which is a significant limitation. The
event that caused a kernel to fail may be the effect of
a corrupt data structure (i.e., it would continue to ex-
ist upon restart) or may create corruption within kernel
data structures during the process of crashing. Many
corruptions may make Otherworld’s reconstruction im-
possible, while mini-ckpts provides non-stop execution
without this limitation.
mini-ckpts may serve a secondary role beyond reac-

tive fault tolerance for operating systems by providing
a means of fast kernel rejuvenation, if used proactively
outside the existence of an imminent crash/fault [24].
Outside of OS designs involving non-volatile memory,
to the best of our knowledge, this work is the first in its
class to provide fast operating system restarts without
checkpointing or interrupting an application [9]. Reju-
venating the OS in HPC workloads and virtual machine
monitors has been shown to be beneficial in reducing
downtime [32, 31].

11. CONCLUSION

Today’s operating systems are currently not designed



with fault tolerance in mind, despite the fact that OS
memory appears more likely to fail than the remainder
of memory. The default mechanism to handle a failure
within Linux and commodity OS’s is to print an error
message and reboot, causing a loss of all unsaved appli-
cation data on the node and typically triggers a restart
for the remainder of the nodes in the application. For
these HPC applications, where checkpointing, rollback,
and rework are expensive, mitigating an OS crash by al-
lowing warm reboots and recovering applications with-
out data loss can provide a safeguard against memory
corruption, system hangs, and other unexpected fail-
ures. This work has identified the key points of in-
strumentation within the Linux kernel required to save
the critical state of an application during an OS failure
and has provided mechanisms via persistent memory to
enable restoration of application data across reboots.
We provide an experimental implementation and eval-
uation of our prototype, mini-ckpts, capable of pro-
tecting HPC applications from crashes within the kernel
by providing non-stop forward progress immediately af-
ter a short warm reboot. We show that a mini-ckpts
enabled kernel can successfully protect an application
from computation loss (due to a kernel failure), warm
reboot, and transparently restart execution, within 3-6
seconds of a fault occurring. We demonstrate the effec-
tiveness of our work by injecting faults into OpenMP
and MPI HPC benchmarks and observe runtime over-
heads that average between 5% to 6% for OpenMP ap-
plications and 3.1% for MPI applications.
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