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Motivation 
 Silent Data Corruption (SDC)  undetected soft errors that result in 

corruption in storage (Processor, Cache, Disks, RAM, etc) 
 SDC faults may manifest themselves as bit-flips in memory 
o Some bit-flips are not correctable or even detected even with 

hardware ECC protection 
o Exacerbating this situation, when SDC goes undetected, 

applications continue to run while reporting invalid results 
• This is a severe problem for today’s large-scale simulations 

 Server class hardware supports ECC; one common form provides 
single error correct, double error detect (SECDEC) 

 Non-server class hardware provides no protection 
 Today there is no generic way to protect applications without ECC 
 Even with ECC, hardware SECDEC protection fails you when 3 or 

more bit flips occur 
 SDC events are expected to grow dramatically as chip density, heat 

generation, and core counts increase in larger HPC systems 
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LIBSDC: A software-based solution 
 Idea: Provide SDC protection in software by tracking accesses to  

memory regions and ensuring their integrity before an application 
uses that region’s data 

 For each region of memory choose one or both: 
o Hashes: Detect memory corruption via hash mismatches 
o ECC/Hamming Codes: Correct some SDCs, even if hardware ECC 

failed to detect them 
 Application-independent and transparent 
 No code changes required for applications 
 Using the MMU provides a granularity of a single page for a region 

Tuning 
 Max-unlocked: Adjust the maximum number of pages to be allowed 

“unlocked” at a time. Ideally set at the number of pages in an 
application’s working-set during runtime 

 Hash or ECC: Choose if you desire SDC detection and/or correction 
 Memory to protect: Choose or combine: 

o Application’s heap, bss, data, and/or code 
o Other linked libraries (optionally include or exclude) 

Method 
SHA1 

Hashing 
(4KB pages) 

72/64 Hamming Codes 
(ECC) 

Storage 
Overhead 0.49% 12.5% 

Future Work 
 Recent related work has shown (Ferreira, SC11) page hashing on 

GPUs can greatly reduce the overhead spent hashing on the CPU 
 Replace LIBSDC’s FIFO policy of unlocked pages with a smarter 

frequency-based algorithm 
 Investigate using kernel page tables/invalid bit to reduce the 

overhead incurred from frequent use of mprotect (TLB flushes may 
be responsible for much overhead) 

Memory Verification 
On page request (inital read or write): 
  If page is locked: 
    Perform hash of page 
    Compare current hash with previously stored known-good hash 
    If any inconsistency found: 
      Notify the presence of SDC and report location 
      Terminate application / Rollback to previous checkpoint 
    Mark page as unlocked (mprotect) 
 
On page lock: 
  Calculate new hash of entire page 
  Storage hash in separate location 
  Mark page as locked (mprotect) 

Implementation 
 Page tracking is accomplished with mprotect (removing read/write) 
o Each new page access triggers an access violation which allows 

LIBSDC to monitor application activity (SEGV handler) 
o Swap out unlocked pages upon reach max-unlocked 

 Permission changes break many libraries 
o Syscalls will fail if passed protected pointers 

• ptrace is used to intercept all syscalls and unprotect pointers 
within syscall parameters 

o MPI implementations will fail with protected pointers, too 
• LIBSDC’s MPI profiling layer wrappers unprotect passed 

buffers 
o Separate memory allocators prevent unprotected libraries from 

sharing virtual addresses in the same page as protected data 

HPCCG Results 
 HPCCG – A Sandia Natl. Labs kernel conjugate gradient solver from 

the Mantevo Miniapps 
 256 processes on a 768x8x8 matrix 

o AMD Opteron 6128 (Magny Core) – 16 cores per node 
o 32GB RAM per node 
o 40Gbit/s Infiniband 

 
 
 
 
 
 
 
 
 
 
 

 Ideal max-unlocked around 4096-5120 to match working-set size 
 On average, about 15% of overhead spent on page hashing 
 53% overhead vs baseline when tuned with optimal max-unlocked 
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Application Memory with LIBSDC 
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Locked/Protected  Page – LIBSDC must validate before next use – read/write 
causes access violation 

Unlocked/Unprotected Page – Recently validated – may be read/written 

LIBSDC storage (i.e., hashes of pages protected) 
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