
A Tunable, Software-based DRAM Error
Detection and Correction Library for HPC

David Fiala (NCSU), Kurt Ferreira (SNL),

Frank Mueller (NCSU), Christian Engelmann (ORNL)

Motivation
 Silent Data Corruption (SDC)  undetected soft errors that result in

corruption in storage (Processor, Cache, Disks, RAM, etc)
 SDC faults may manifest themselves as bit-flips in memory
o Some bit-flips are not correctable or even detected even with

hardware ECC protection
o Exacerbating this situation, when SDC goes undetected,

applications continue to run while reporting invalid results
• This is a severe problem for today’s large-scale simulations

 Server class hardware supports ECC; one common form provides
single error correct, double error detect (SECDEC)

 Non-server class hardware provides no protection
 Today there is no generic way to protect applications without ECC
 Even with ECC, hardware SECDEC protection fails you when 3 or

more bit flips occur
 SDC events are expected to grow dramatically as chip density, heat

generation, and core counts increase in larger HPC systems

This work was supported in part by NSF grants CNS-1058779, CNS-0958311, DOE grant DE-FG02-08ER25837, a subcontract from Sandia National Laboratory. and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. De-AC05-00OR22725.

LIBSDC: A software-based solution
 Idea: Provide SDC protection in software by tracking accesses to

memory regions and ensuring their integrity before an application
uses that region’s data

 For each region of memory choose one or both:
o Hashes: Detect memory corruption via hash mismatches
o ECC/Hamming Codes: Correct some SDCs, even if hardware ECC

failed to detect them
 Application-independent and transparent
 No code changes required for applications
 Using the MMU provides a granularity of a single page for a region

Tuning
 Max-unlocked: Adjust the maximum number of pages to be allowed

“unlocked” at a time. Ideally set at the number of pages in an
application’s working-set during runtime

 Hash or ECC: Choose if you desire SDC detection and/or correction
 Memory to protect: Choose or combine:

o Application’s heap, bss, data, and/or code
o Other linked libraries (optionally include or exclude)

Method
SHA1

Hashing
(4KB pages)

72/64 Hamming Codes
(ECC)

Storage
Overhead 0.49% 12.5%

Future Work
 Recent related work has shown (Ferreira, SC11) page hashing on

GPUs can greatly reduce the overhead spent hashing on the CPU
 Replace LIBSDC’s FIFO policy of unlocked pages with a smarter

frequency-based algorithm
 Investigate using kernel page tables/invalid bit to reduce the

overhead incurred from frequent use of mprotect (TLB flushes may
be responsible for much overhead)

Memory Verification
On page request (inital read or write):
 If page is locked:
 Perform hash of page
 Compare current hash with previously stored known-good hash
 If any inconsistency found:
 Notify the presence of SDC and report location
 Terminate application / Rollback to previous checkpoint
 Mark page as unlocked (mprotect)

On page lock:
 Calculate new hash of entire page
 Storage hash in separate location
 Mark page as locked (mprotect)

Implementation
 Page tracking is accomplished with mprotect (removing read/write)
o Each new page access triggers an access violation which allows

LIBSDC to monitor application activity (SEGV handler)
o Swap out unlocked pages upon reach max-unlocked

 Permission changes break many libraries
o Syscalls will fail if passed protected pointers

• ptrace is used to intercept all syscalls and unprotect pointers
within syscall parameters

o MPI implementations will fail with protected pointers, too
• LIBSDC’s MPI profiling layer wrappers unprotect passed

buffers
o Separate memory allocators prevent unprotected libraries from

sharing virtual addresses in the same page as protected data

HPCCG Results
 HPCCG – A Sandia Natl. Labs kernel conjugate gradient solver from

the Mantevo Miniapps
 256 processes on a 768x8x8 matrix

o AMD Opteron 6128 (Magny Core) – 16 cores per node
o 32GB RAM per node
o 40Gbit/s Infiniband

 Ideal max-unlocked around 4096-5120 to match working-set size
 On average, about 15% of overhead spent on page hashing
 53% overhead vs baseline when tuned with optimal max-unlocked

Protected
Application

LIBSDC

Protected
Libraries

Unprotected
Libraries

GLIBC Mem. Allocator

syscalls
MPI calls

syscalls
memory allocation
MPI calls

syscalls
memory allocation
MPI calls

Kernel

syscalls
ptrace
SEGV access violations

LIBSDC Mem. Allocator

Application Memory with LIBSDC
Unprotected code, BSS, data

Protected code, bss, data

LIBSDC internal data, hashes, ECC

Locked/Protected Page – LIBSDC must validate before next use – read/write
causes access violation

Unlocked/Unprotected Page – Recently validated – may be read/written

LIBSDC storage (i.e., hashes of pages protected)

	A Tunable, Software-based DRAM Error�Detection and Correction Library for HPC��David Fiala (NCSU), Kurt Ferreira (SNL),�Frank Mueller (NCSU), Christian Engelmann (ORNL)

