

# Investigating the Benefits of Redundancy Plus Checkpointing for Hard-Fault and Soft Error Protection in HPC

Component failures require support of checkpoint/restart (C/R)

| tch | failure     | $\rightarrow$ | application | fails |  |
|-----|-------------|---------------|-------------|-------|--|
|     | Application |               |             | Fault |  |

| St | art |      |            |      |               | $\sim$                        |           |       |      |
|----|-----|------|------------|------|---------------|-------------------------------|-----------|-------|------|
|    |     |      |            |      |               |                               |           |       |      |
|    |     | work | ckpnt      | work | ckpnt         | work restart re               | work work | ckpnt | work |
|    |     |      | <u>k_*</u> |      | $\rightarrow$ | $\leftarrow \neg \rightarrow$ |           |       |      |
|    |     |      |            | δ    | 1             | <u> </u>                      |           |       |      |

- Adding hardware increases the likelihood of faults

|         | 168-h | our Job, 5 year M1 | BF [Sandia]    |         |
|---------|-------|--------------------|----------------|---------|
| # nodes | Work  | Checkpoint         | Re-computation | Restart |
| 100     | 96%   | 1%                 | 3%             | 0%      |
| 1,000   | 92%   | 7%                 | 1%             | 0%      |
| 10,000  | 75%   | 15%                | 6%             | 4%      |
| 100,000 | 35%   | 20%                | 10%            | 35%     |

- 100% redundancy provides 5x job throughput [Sandia]
- In the face of fail-stop failures, redundancy increases reliability



redundancy



- Another class of fault: Silent Data Corruption (SDC)
- cores

David Fiala, James Elliot, Kishor Kharbas Advisor: Frank Mueller (NCSU) Collaborators: Christian Engelmann (ORNL), Rolf Riesen, Kurt Ferreira (SNL)

This work was supported in part by NSF grants CNS-1058779, CNS-0958311, DOE grant DE-FG02-08ER25837, a subcontract from Sandia National Laboratory. and by the Laboratory ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. De-AC05-000R22725.

| 1011 <u>1</u> 1 | <b>Receiver</b><br>Replica: 0 |
|-----------------|-------------------------------|
| 1011 <u>1</u> 1 | <b>Receiver</b><br>Replica: 1 |
| 1011 <u>1</u> 1 | <b>Receiver</b><br>Replica: 2 |
|                 |                               |



126.4

146.2

3x [sec]

152.3

- Redundancy is cheap in terms of software overhead
- Application sensitivity to soft errors may be very high
- SDC protection comes free as redundancy is used to increase system resilience • RedMPI can successfully protect applications from SDC faults and continue
  - execution to a successful, correct completion

## **OBSERVATION: SDC PROPAGATION**



|        | 3x OV |
|--------|-------|
|        | 1.1%  |
|        | 1.3%  |
|        | 1.1%  |
|        |       |
|        | 3x OV |
| ,      | 0.7%  |
|        | 0.7%  |
|        | 1.2%  |
|        |       |
|        |       |
|        | 3x OV |
|        | 26.0% |
| /<br>D | 31.5% |
| /<br>0 | 20.5% |

### CONCLUSIONS

For large systems, C/R + redundancy increases job throughout